ترغب بنشر مسار تعليمي؟ اضغط هنا

Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a Gorenstein $mathbf{k}$-algebra, and let $V$ be an indecomposable finitely generated non-projective Gorenstein-projective left $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$. In this article, we prove that the universal deformation rings $R(Lambda,V)$ and $R(Lambda,Omega_Lambda V)$ are isomorphic, where $Omega_Lambda V$ denotes the first syzygy of $V$ as a left $Lambda$-module. We also prove the following result. Assume that $Gamma$ is another Gorenstein $mathbf{k}$-algebra such that there exists $ell geq 0$ and a pair of bimodules $({_Gamma}X_Lambda, {_Lambda}Y_Gamma)$ that induces a singular equivalence of Morita type with level $ell$ (as introduced by Z. Wang). Then the left $Gamma$-module $Xotimes_Lambda V$ is also Gorenstein-projective and the universal deformation rings $R(Gamma, Xotimes_Lambda V)$ and $R(Lambda, V)$ are isomorphic.
We determine the derived representation type of Nakayama algebras and prove that a derived tame Nakayama algebra without simple projective module is gentle or derived equivalent to some skewed-gentle algebra, and as a consequence, we determine its singularity category.
Let $mathbf{k}$ be a fixed field of arbitrary characteristic, and let $Lambda$ be a finite dimensional $mathbf{k}$-algebra. Assume that $V$ is a left $Lambda$-module of finite dimension over $mathbf{k}$. F. M. Bleher and the author previously proved that $V$ has a well-defined versal deformation ring $R(Lambda,V)$ which is a local complete commutative Noetherian ring with residue field isomorphic to $mathbf{k}$. Moreover, $R(Lambda,V)$ is universal if the endomorphism ring of $V$ is isomorphic to $mathbf{k}$. In this article we prove that if $Lambda$ is a basic connected cycle Nakayama algebra without simple modules and $V$ is a Gorenstein-projective left $Lambda$-module, then $R(Lambda,V)$ is universal. Moreover, we also prove that the universal deformation rings $R(Lambda,V)$ and $R(Lambda, Omega V)$ are isomorphic, where $Omega V$ denotes the first syzygy of $V$. This result extends the one obtained by F. M. Bleher and D. J. Wackwitz concerning universal deformation rings of finitely generated modules over self-injective Nakayama algebras. In addition, we also prove the following result concerning versal deformation rings of finitely generated modules over triangular matrix finite dimensional algebras. Let $Sigma=begin{pmatrix} Lambda & B0& Gammaend{pmatrix}$ be a triangular matrix finite dimensional Gorenstein $mathbf{k}$-algebra with $Gamma$ of finite global dimension and $B$ projective as a left $Lambda$-module. If $begin{pmatrix} VWend{pmatrix}_f$ is a finitely generated Gorenstein-projective left $Sigma$-module, then the versal deformation rings $Rleft(Sigma,begin{pmatrix} VWend{pmatrix}_fright)$ and $R(Lambda,V)$ are isomorphic.
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra, and let $V$ be an indecomposable Gorenstein-projective $Lambda$-module with finite dimension over $mathbf{k}$. It follows that $V$ has a well-defined versal deformation ring $R(Lambda, V)$, which is complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$, and which is universal provided that the stable endomorphism ring of $V$ is isomorphic to $mathbf{k}$. We prove that if $Lambda$ is a monomial algebra without overlaps, then $R(Lambda,V)$ is universal and isomorphic either to $mathbf{k}$ or to $mathbf{k}[[t]]/(t^2)$
Let $mathbf{k}$ be field of arbitrary characteristic and let $Lambda$ be a finite dimensional $mathbf{k}$-algebra. From results previously obtained by F.M Bleher and the author, it follows that if $V^bullet$ is an object of the bounded derived catego ry $mathcal{D}^b(Lambdatextup{-mod})$ of $Lambda$, then $V^bullet$ has a well-defined versal deformation ring $R(Lambda, V^bullet)$, which is complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$, and which is universal provided that $textup{Hom}_{mathcal{D}^b(Lambdatextup{-mod})}(V^bullet, V^bullet)=mathbf{k}$. Let $mathcal{D}_textup{sg}(Lambdatextup{-mod})$ denote the singularity category of $Lambda$ and assume that $V^bullet$ is a bounded complex whose terms are all finitely generated Gorenstein projective left $Lambda$-modules. In this article we prove that if $textup{Hom}_{mathcal{D}_textup{sg}(Lambdatextup{-mod})}(V^bullet, V^bullet)=mathbf{k}$, then the versal deformation ring $R(Lambda, V^bullet)$ is universal. We also prove that certain singular equivalences of Morita type (as introduced by X. W. Chen and L. G. Sun) preserve the isomorphism class of versal deformation rings of bounded complexes whose terms are finitely generated Gorenstein projective $Lambda$-modules.
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the thir d author that $V$ has a well-defined versal deformation ring $R(Lambda, V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$. The third author also proved that if $Lambda$ is a Gorenstein $mathbf{k}$-algebra and $V$ is a Cohen-Macaulay $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$, then $R(Lambda, V)$ is universal. In this article we prove that the isomorphism class of a versal deformation ring is preserved under singular equivalence of Morita type between Gorenstein $mathbf{k}$-algebras.
Let $mathbf{k}$ be an algebraically closed field, and let $Lambda$ be a finite dimensional $mathbf{k}$-algebra. We prove that if $Lambda$ is a Gorenstein algebra, then every finitely generated Cohen-Macaulay $Lambda$-module $V$ whose stable endomorph ism ring is isomorphic to $mathbf{k}$ has a universal deformation ring $R(Lambda,V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$, and which is also stable under taking syzygies. We investigate a particular non-self-injective Gorenstein algebra $Lambda_0$, which is of infinite global dimension and which has exactly three isomorphism classes of finitely generated indecomposable Cohen-Macaulay $Lambda_0$-modules $V$ whose stable endomorphism ring is isomorphic to $mathbf{k}$. We prove that in this situation, $R(Lambda_0,V)$ is isomorphic either to $mathbf{k}$ or to $mathbf{k}[[t]]/(t^2)$.
Let $k$ be a field and let $Lambda$ be a finite dimensional $k$-algebra. We prove that every bounded complex $V^bullet$ of finitely generated $Lambda$-modules has a well-defined versal deformation ring $R(Lambda,V^bullet)$ which is a complete local c ommutative Noetherian $k$-algebra with residue field $k$. We also prove that nice two-sided tilting complexes between $Lambda$ and another finite dimensional $k$-algebra $Gamma$ preserve these versal deformation rings. Additionally, we investigate stable equivalences of Morita type between self-injective algebras in this context. We apply these results to the derived equivalence classes of the members of a particular family of algebras of dihedral type that were introduced by Erdmann and shown by Holm to be not derived equivalent to any block of a group algebra.
Let $R$ be an infinite Dedekind domain with at most finitely many units, and let $K$ denote its field of fractions. We prove the following statement. If $L/K$ is a finite Galois extension of fields and $mathcal{O}$ is the integral closure of $R$ in $ L$, then $mathcal{O}$ contains infinitely many prime ideals. In particular, if $mathcal{O}$ is further a unique factorization domain, then $mathcal{O}$ contains infinitely many non-associate prime elements.
Let $k$ be an algebraically closed field, let $A$ be a finite dimensional $k$-algebra and let $V$ be a $A$-module with stable endomorphism ring isomorphic to $k$. If $A$ is self-injective then $V$ has a universal deformation ring $R(A,V)$, which is a complete local commutative Noetherian $k$-algebra with residue field $k$. Moreover, if $Lambda$ is also a Frobenius $k$-algebra then $R(A,V)$ is stable under syzygies. We use these facts to determine the universal deformation rings of string $Ar$-modules whose stable endomorphism ring isomorphic to $k$, where $Ar$ is a symmetric special biserial $k$-algebra that has quiver with relations depending on the four parameters $ bar{r}=(r_0,r_1,r_2,k)$ with $r_0,r_1,r_2geq 2$ and $kgeq 1$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا