ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Deformation Rings for Complexes over Finite-Dimensional Algebras

128   0   0.0 ( 0 )
 نشر من قبل Jose Velez
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $mathbf{k}$ be field of arbitrary characteristic and let $Lambda$ be a finite dimensional $mathbf{k}$-algebra. From results previously obtained by F.M Bleher and the author, it follows that if $V^bullet$ is an object of the bounded derived category $mathcal{D}^b(Lambdatextup{-mod})$ of $Lambda$, then $V^bullet$ has a well-defined versal deformation ring $R(Lambda, V^bullet)$, which is complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$, and which is universal provided that $textup{Hom}_{mathcal{D}^b(Lambdatextup{-mod})}(V^bullet, V^bullet)=mathbf{k}$. Let $mathcal{D}_textup{sg}(Lambdatextup{-mod})$ denote the singularity category of $Lambda$ and assume that $V^bullet$ is a bounded complex whose terms are all finitely generated Gorenstein projective left $Lambda$-modules. In this article we prove that if $textup{Hom}_{mathcal{D}_textup{sg}(Lambdatextup{-mod})}(V^bullet, V^bullet)=mathbf{k}$, then the versal deformation ring $R(Lambda, V^bullet)$ is universal. We also prove that certain singular equivalences of Morita type (as introduced by X. W. Chen and L. G. Sun) preserve the isomorphism class of versal deformation rings of bounded complexes whose terms are finitely generated Gorenstein projective $Lambda$-modules.



قيم البحث

اقرأ أيضاً

Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra, and let $V$ be a finitely generated $Lambda$-module. F. M. Bleher and the third author previously proved that $V$ has a well-defined ver sal deformation ring $R(Lambda,V)$. If the stable endomorphism ring of $V$ is isomorphic to $mathbf{k}$, they also proved under the additional assumption that $Lambda$ is self-injective that $R(Lambda,V)$ is universal. In this paper, we prove instead that if $Lambda$ is arbitrary but $V$ is Gorenstein-projective then $R(Lambda,V)$ is also universal when the stable endomorphism ring of $V$ is isomorphic to $mathbf{k}$. Moreover, we show that singular equivalences of Morita type (as introduced by X. W. Chen and L. G. Sun) preserve the isomorphism classes of versal deformation rings of finitely generated Gorenstein-projective modules over Gorenstein algebras. We also provide examples. In particular, if $Lambda$ is a monomial algebra in which there is no overlap (as introduced by X. W. Chen, D. Shen and G. Zhou) we prove that every finitely generated indecomposable Gorenstein-projective $Lambda$-module has a universal deformation ring that is isomorphic to either $mathbf{k}$ or to $mathbf{k}[![t]!]/(t^2)$.
Let $mathbf{k}$ be an algebraically closed field, and let $Lambda$ be a finite dimensional $mathbf{k}$-algebra. We prove that if $Lambda$ is a Gorenstein algebra, then every finitely generated Cohen-Macaulay $Lambda$-module $V$ whose stable endomorph ism ring is isomorphic to $mathbf{k}$ has a universal deformation ring $R(Lambda,V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$, and which is also stable under taking syzygies. We investigate a particular non-self-injective Gorenstein algebra $Lambda_0$, which is of infinite global dimension and which has exactly three isomorphism classes of finitely generated indecomposable Cohen-Macaulay $Lambda_0$-modules $V$ whose stable endomorphism ring is isomorphic to $mathbf{k}$. We prove that in this situation, $R(Lambda_0,V)$ is isomorphic either to $mathbf{k}$ or to $mathbf{k}[[t]]/(t^2)$.
Let $k$ be a field and let $Lambda$ be a finite dimensional $k$-algebra. We prove that every bounded complex $V^bullet$ of finitely generated $Lambda$-modules has a well-defined versal deformation ring $R(Lambda,V^bullet)$ which is a complete local c ommutative Noetherian $k$-algebra with residue field $k$. We also prove that nice two-sided tilting complexes between $Lambda$ and another finite dimensional $k$-algebra $Gamma$ preserve these versal deformation rings. Additionally, we investigate stable equivalences of Morita type between self-injective algebras in this context. We apply these results to the derived equivalence classes of the members of a particular family of algebras of dihedral type that were introduced by Erdmann and shown by Holm to be not derived equivalent to any block of a group algebra.
Let $Lambda$ be a basic finite dimensional algebra over an algebraically closed field $mathbf{k}$, and let $widehat{Lambda}$ be the repetitive algebra of $Lambda$. In this article, we prove that if $widehat{V}$ is a left $widehat{Lambda}$-module with finite dimension over $mathbf{k}$, then $widehat{V}$ has a well-defined versal deformation ring $R(widehat{Lambda},widehat{V})$, which is a local complete Noetherian commutative $mathbf{k}$-algebra whose residue field is also isomorphic to $mathbf{k}$. We also prove that $R(widehat{Lambda},widehat{V})$ is universal provided that $underline{mathrm{End}}_{widehat{Lambda}}(widehat{V})=mathbf{k}$ and that in this situation, $R(widehat{Lambda},widehat{V})$ is stable after taking syzygies. We apply the obtained results to finite dimensional modules over the repetitive algebra of the $2$-Kronecker algebra, which provides an alternative approach to the deformation theory of objects in the bounded derived category of coherent sheaves over $mathbb{P}^1_{mathbf{k}}$
Let $mathbf{k}$ be an algebraically closed field of arbitrary characteristic, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra and let $V$ be a $Lambda$-module with stable endomorphism ring isomorphic to $mathbf{k}$. If $Lambda$ is self-injec tive, then $V$ has a universal deformation ring $R(Lambda,V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$. Moreover, if $Lambda$ is further a Frobenius $mathbf{k}$-algebra, then $R(Lambda,V)$ is stable under syzygies. We use these facts to determine the universal deformation rings of string $Lambda_{m,N}$-modules whose corresponding stable endomorphism ring is isomorphic to $mathbf{k}$, and which lie either in a connected component of the stable Auslander-Reiten quiver of $Lambda_{m,N}$ containing a module with endomorphism ring isomorphic to $mathbf{k}$ or in a periodic component containing only string $Lambda_{m,N}$-modules, where $mgeq 3$ and $Ngeq 1$ are integers, and $Lambda_{m,N}$ is a self-injective special biserial $mathbf{k}$-algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا