ترغب بنشر مسار تعليمي؟ اضغط هنا

Tadpole Galaxies look like a star forming head with a tail structure to the side. They are also named cometaries. In a series of recent works we have discovered a number of issues that lead us to consider them extremely interesting targets. First, fr om images, they are disks with a lopsided starburst. This result is firmly established with long slit spectroscopy in a nearby representative sample. They rotate with the head following the rotation pattern but displaced from the rotation center. Moreover, in a search for extremely metal poor (XMP) galaxies, we identified tadpoles as the dominant shapes in the sample- nearly 80% of the local XMP galaxies have a tadpole morphology. In addition, the spatially resolved analysis of the metallicity shows the remarkable result that there is a metallicity drop right at the position of the head. This is contrary to what intuition would say and difficult to explain if star formation has happened from gas processed in the disk. The result could however be understood if the star formation is driven by pristine gas falling into the galaxy disk. If confirmed, we could be unveiling, for the first time, cool flows in action in our nearby world. The tadpole class is relatively frequent at high redshift - 10% of resolvable galaxies in the Hubble UDF but less than 1% in the local Universe. They are systems that could track cool flows and test models of galaxy formation.
Local UV-bright galaxies in the Kiso survey include clumpy systems with kpc-size star complexes that resemble clumpy young galaxies in surveys at high redshift. We compare clump masses and underlying disks in several dozen galaxies from each of these surveys to the star complexes and disks of normal spirals. Photometry and spectroscopy for the Kiso and spiral sample come from the Sloan Digital Sky Survey. We find that the largest Kiso clumpy galaxies resemble UDF clumpies in terms of the star formation rates, clump masses, and clump surface densities. Clump masses and surface densities in normal spirals are smaller. If the clump masses are proportional to the turbulent Jeans mass in the interstellar medium, then for the most luminous galaxies in the sequence of normal:Kiso:UDF, the turbulent speeds and surface densities increase in the proportions 1.0:4.7:5.0 and 1.0:4.0:5.1, respectively, for fixed restframe B-band absolute magnitude. For the least luminous galaxies in the overlapping magnitude range, the turbulent speed and surface density trends are 1.0:2.7:7.4 and 1.0:1.4:3.0, respectively. We also find that while all three types have radially decreasing disk intensities when measured with ellipse-fit azimuthal averages, the average profiles are more irregular for UDF clumpies (which are viewed in their restframe UV) than for Kiso galaxies (viewed at g-band), and major axis intensity scans are even more irregular for the UDF than Kiso galaxies. Local clumpy galaxies in the Kiso survey appear to be intermediate between UDF clumpies and normal spirals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا