ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore muon anomalous magnetic moment (muon $g-2$) in a scotogenic neutrino model with a gauged lepton numbers symmetry $U(1)_{mu-tau}$. In this model, a dominant muon $g-2$ contribution comes from not an additional gauge sector but the Yukawa se ctor. In our numerical $Delta chi^2$ analysis, we show that our model is in favor of normal hierarchy with some features. We also demonstrate two benchmark points, satisfying muon $g-2$ at the best fit value $25.1times10^{-10}$.
We construct a model to explain the muon anomalous magnetic moment, without considering any lepton flavor violations, in the modular $A_4$ symmetry. We have investigated a predictive radiative seesaw model including dark matter candidate at favorable fixed point of $tau=omega$ obtained by recent analysis of the stabilized moduli values from the possible configurations of the flux compactifications. In the result, we show our predictions on the Dirac CP and Majorana phases, the neutrino masses, the mass range of dark matter as well as the muon anomalous magnetic moment through the $chi^2$ analysis.
We analyze the dispersion relations of Weyl or Majorana, and Dirac neutrinos in a complex scalar medium which interacts with the neutrinos through Yukawa couplings. They are solved by perturbative calculation in various limits representing different physical situations, some of which allow the medium-induced neutrino oscillation to occur. Remarkably, peculiar dispersion relations arise differently for Majorana or Dirac neutrinos in the non-relativistic limit. This provides an unpleasant restriction on the cosmological scenario of a scalar dark matter coupling to neutrinos. At present, the model parameter space is constrained by the neutrino scattering with dark matter through astrophysical neutrino observations.
We investigate features of the sterile neutrinos in the presence of a light gauge boson $X^mu$ that couples to the neutrino sector. The novel bounds on the active-sterile neutrino mixings $| U_{ell 4} |^2$, especially for tau flavor ($l = tau$), from various collider and fixed target experiments are explored. Also, taking into account the additional decay channel of the sterile neutrino into a light gauge boson ($ u_4 to u_ell e^+ e^-$), we explore and constrain a parameter space for low energy excess in neutrino oscillation experiments.
We propose an attractive model that excess of electron recoil events around 1-5 keV reported by the XENON1T collaboration nicely links to the tiny neutrino masses based on a radiative seesaw scenario. Our dark matter(DM) is an isospin singlet inert b oson that plays an role in generating non-vanishing neutrino mass at one-loop level, and this DM inelastically interacts with a pair of electrons at one-loop level that is required to explain the XENON1T anomaly. It is also demanded that the mass difference between an excited DM and DM has to be of the order keV. Interestingly, the small mass difference $sim$keV is proportional to the neutrino masses. It suggests that we have double suppressions through the tiny mass difference and the one-loop effect. Then, we show some benchmark points to explain the XENON1T anomaly, satisfying all the constraints such as the event ratio of electrons of XENON1T, a long lived particle be longer than the age of Universe, and relic density in addition to the neutrino oscillation data and lepton flavor violations(LFVs).
Recently XENON1T Collaboration announced that they observed some excess in the electron recoil energy around a 2-3 keV. We show that this excess can be interpreted as exothermic scattering of excited dark matter (XDM), $XDM + e_{atomic} rightarrow DM + e_{free}$ on atomic electron through dark photon exchange. We consider DM models with local dark $U(1)$ gauge symmetry that is spontaneously broken into its $Z_2$ subgroup by Krauss-Wilczek mechanism. In order to explain the XENON1T excess with the correct DM thermal relic density within freeze-out scenario, all the particles in the dark sector should be light enough, namely $sim O(100)$ MeV for scalar DM and $sim O(1-10)$ MeV for fermion DM cases. And even lighter dark Higgs $phi$ plays an important role in the DM relic density calculation: $X X^dagger rightarrow Z phi$ for scalar DM ($X$) and $chi bar{chi} rightarrow phi phi$for fermion DM ($chi$) assuming $m_{Z} > m_chi$. Both of them are in the $p$-wave annihilation, and one can easily evade stringent bounds from Planck data on CMB on the $s$-wave annihilations, assuming other dangerous $s$-wave annihilations are kinematically forbidden.
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo site contributions from asymmetric distribution of (dark) matter and anti-matter, and thus it could appear in precision measurement of neutrino or anti-neutrino oscillations. Furthermore, the standard neutrino oscillation can occur from the symmetric dark matter effect even for massless neutrinos.
The CP violating two-Higgs doublet model of type-X may enhance significantly the electric and magnetic moment of leptons through two-loop Barr-Zee diagrams. We analyze the general parameter space of the type-X 2HDM consistent with the muon $g-2$ and the electron EDM measurements to show how strongly the CP violating parameter is constrained in the region explaining the muon $ g-2$ anomaly.
Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The rece nt multi-messenger observation of a high energy neutrino, IceCube-170922A, can give a robust upper bound $sigma /M_{dm} lesssim 5.1times 10^{-23} {rm cm}^2 /$GeV on the interaction between neutrino and dark matter at a neutrino energy of 290 TeV allowing 90% suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can constrain models of dark matter-neutrino interactions.
We consider the production of right-handed (RH) sneutrino dark matter in a model of Dirac neutrino where neutrino Yukawa coupling constants are very small. Dark matter RH sneutrinos are produced by scatterings and decays of thermal particles in the e arly Universe without reaching thermal equilibrium due to the small Yukawa couplings. We show that not only decays of thermal particles but also the thermal scatterings can be a dominant source as well as non-thermal production in a scenario with light sneutrinos and charged sleptons while other supersymmetric particles are heavy. We also discuss the cosmological implications of this scenario.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا