ترغب بنشر مسار تعليمي؟ اضغط هنا

We compare vertical profiles of the extraplanar H$alpha$ emission to those of the UV emission for 38 nearby edge-on late-type galaxies. It is found that detection of the diffuse extraplanar dust (eDust), traced by the vertically extended, scattered U V starlight, always coincides with the presence of the extraplanar H$alpha$ emission. A strong correlation between the scale heights of the extraplanar H$alpha$ and UV emissions is also found; the scale height at H$alpha$ is found to be $sim0.74$ of the scale height at FUV. Our results may indicate the multiphase nature of the diffuse ionized gas and dust in the galactic halos. The existence of eDust in galaxies where the extraplanar H$alpha$ emission is detected suggests that a larger portion of the extraplanar H$alpha$ emission than that predicted in previous studies may be caused by H$alpha$ photons that originate from H II regions in the galactic plane and are subsequently scattered by the eDust. This possibility raise a in studying the eDIG. We also find that the scale heights of the extraplanar emissions normalized to the galaxy size correlate well with the star formation rate surface density of the galaxies. The properties of eDust in our galaxies is on a continuation line of that found through previous observations of the extraplanar polycyclic aromatic hydrocarbons emission in more active galaxies known to have galactic winds.
We present [Fe II] 1.64 {mu}m imaging observations for jets and outflows from young stellar objects (YSOs) over the northern part (~ 24x45) of the Carina Nebula, a massive star forming region. The observations were performed with IRIS2 of Anglo-Austr alian Telescope and the seeing was ~1.5+-0.5. Eleven jet and outflow features are detected at eight different regions, and are named as Ionized Fe Objects (IFOs). One Herbig-Haro object candidate missed in Hubble Space Telescope H{alpha} observations is newly identified as HHc-16, referring our [Fe II] images. IFOs have knotty or longish shapes, and the detection rate of IFOs against previously identified YSOs is 1.4 %, which should be treated as a lower limit. Four IFOs show an anti-correlated peak intensities in [Fe II] and H{alpha}, where the ratio I([Fe II])/I(H{alpha}) is higher for longish IFOs than for knotty IFOs. We estimate the outflow mass loss rate from the [Fe II] flux, using two different methods. The jet-driving objects are identified for three IFOs (IFO-2, -4, and -7), for which we study the relations between the outflow mass loss rate and the YSO physical parameters from the radiative transfer model fitting. The ratios of the outflow mass loss rate over the disk accretion rate are consistent for IFO-4 and -7 with the previously reported values (10^-2-10^+1), while it is higher for IFO-2. This excess may be from the underestimation of the disk accretion rate. The jet-driving objects are likely to be low- or intermediate-mass stars. Other YSO physical parameters, such as luminosity and age, show reasonable relations or trends.
We present near-infrared (2.5-5.0 {mu}m) spectral studies of shocked H2 gas in the two supernova remnants IC 443 and HB 21, which are well known for their interactions with nearby molecular clouds. The observations were performed with Infrared Camera (IRC) aboard the AKARI satellite. At the energy range 7000 K <= E(v,J) <= 20000 K, the shocked H2 gas in IC 443 shows an ortho-to-para ratio (OPR) of 2.4+0.3-0.2, which is significantly lower than the equilibrium value 3, suggesting the existence of non-equilibrium OPR. The shocked gas in HB 21 also indicates a potential non-equilibrium OPR in the range of 1.8-2.0. The level populations are well described by the power-law thermal admixture model with a single OPR, where the temperature integration range is 1000-4000 K. We conclude that the obtained non-equilibrium OPR probably originates from the reformed H2 gas of dissociative J-shocks, considering several factors such as the shock combination requirement, the line ratios, and the possibility that H2 gas can form on grains with a non-equilibrium OPR. We also investigate C-shocks and partially-dissociative J-shocks for the origin of the non-equilibrium OPR. However, we find that they are incompatible with the observed ionic emission lines for which dissociative J-shocks are required to explain. The difference in the collision energy of H atoms on grain surfaces would make the observed difference between the OPRs of IC 443 and HB 21, if dissociative J-shocks are responsible for the H2 emission. Our study suggests that dissociative J-shocks can make shocked H2 gas with a non-equilibrium OPR.
We present near-infrared (2.5 - 5.0 um) spectra of shocked H2 gas in the supernova remnant IC 443, obtained with the satellite AKARI. Three shocked clumps-known as B, C, and G-and one background region were observed, and only H2 emission lines were d etected. Except the clump B, the extinctioncorrected level population shows the ortho-to-para ratio of ~ 3.0. From the level population of the clumps C and G-both AKARIs only and the one extended with previous mid-infrared observations-we found that the v = 0 levels are more populated than the v > 0 levels at a fixed level energy, which cannot be reproduced by any combination of H2 gas in Local Thermodynamic Equilibrium. The populations are described by the two-density power-law thermal admixture model, revised to include the collisions with H atoms. We attributed the lower (n(H2)=10^(2.8-3.8) cm-3) and higher (n(H2)=10^(5.4-5.8) cm-3) density gases to the shocked H2 gas behind C-type and J-type shocks, respectively, based on several arguments including the obtained high H I abundance n(H I)/n(H2)=0.01. Under the hierarchical picture of molecular clouds, the C-type and J-type shocks likely propagate into clumps and clouds (interclump media), respectively. The power-law index b of 1.6 and 3.5, mainly determined by the lower density gas, is attributed to the shock-velocity diversity, which may be a natural result during shock-cloud interactions. According to our results, H2 v = 1 - 0 S(1) emission is mainly from J-shocks propagating into interclump media. The H2 emission was also detected at the background region, and this diffuse H2 emission may originate from collisional process in addition to the ultraviolet photon pumping.
We present near- and mid-infrared observations on the shock-cloud interaction region in the northern part of the supernova remnant HB21, performed with the InfraRed Camera (IRC) aboard AKARI satellite and the Wide InfraRed Camera (WIRC) at the Paloma r 5 m telescope. The IRC 7 um (S7), 11 um (S11), and 15 um (L15) band images and the WIRC H2 v = 1 -> 0 S(1) 2.12 um image show similar shock-cloud interaction features. We chose three representative regions, and analyzed their IRC emissions through comparison with H2 line emissions of several shock models. The IRC colors are well explained by the thermal admixture model of H2 gas--whose infinitesimal H2 column density has a power-law relation with the temperature T, dN ~ T^-b dT--with n(H2) ~ 10^3 cm^-3, b ~ 3, and N(H2 ;T > 100K) ~ 3x10^20 cm^-2. The derived b value may be understood by a bow shock picture, whose shape is cycloidal (cuspy) rather than paraboloidal. However, this picture raises another issue that the bow shocks must reside within ~0.01 pc size-scale, smaller than the theoretically expected. Instead, we conjectured a shocked clumpy interstellar medium picture, which may avoid the sizescale issue while explaining the similar model parameters. The observed H2 v = 1 -> 0 S(1) intensities are a factor of ~17 - 33 greater than the prediction from the power-law admixture model. This excess may be attributed to either an extra component of hot H2 gas or to the effects of collisions with hydrogen atoms, omitted in our power-law admixture model, both of which would increase the population in the v = 1 level of H2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا