ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92+/-0.12 km/s after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a sub-virial velocity dispersion of 0.5 km/s. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly-formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 micro-Gauss magnetic field acting on the dense cores, or be the signature of a cluster with initial sub-structure undergoing global collapse.
We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine t he column density structure of the cloud. In combination with an empirically-verified model of the magnitude distribution of background stars, this column density map allows us to reliably determine overdensities of red sources that are due to embedded protostars in the cloud. We also identify protostars through their extended emission in K-band which comes from excited H2 in protostellar outflows or reflection nebulosity. We find a population of distributed low-mass protostars, suggesting that low-mass protostars may form earlier than, or contemporaneously with, high-mass protostars in such a filament. The low-mass protostellar population may also produce the narrow linewidth SiO emission observed in some clouds without high-mass protostars. Finally, we use a molecular line map of the cloud to determine the virial parameter per unit length along the filament and find that the highest mass protostars form in the most bound portion of the filament, as suggested by theoretical models.
The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of d ense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N2H+ and HCO+ abundances increase as a function of evolutionary stage, whereas the N2H+ (1-0) to HCO+ (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.
We have observed a cluster forming clump (MM3) associated with the infrared dark cloud G34.43+00.24 in the 1.3 mm continuum and the CH3OH, CS, 13CS, SiO, CH3CH2CN, and HCOOCH3 lines with the Atacama Large Millimeter/submillimeter Array and in K-band with the Keck telescope. We have found a young outflow toward the center of this clump in the SiO, CS, and CH3OH lines. This outflow is likely driven by a protostar embedded in a hot core, which is traced by the CH3CH2CN, HCOOCH3, 13CS, and high excitation CH3OH lines. The size of the hot core is about 800 x 300 AU in spite of its low mass (<1.1 M_sun), suggesting a high accretion rate or the presence of multiple star system harboring a few hot corinos. The outflow is highly collimated, and the dynamical timescale is estimated to be less than 740 yr. In addition, we have also detected extended emission of SiO, CS, and CH3OH, which is not associated with the hot core and the outflow. This emission may be related to past star formation activity in the clump. Although G34.43+00.24 MM3 is surrounded by a dark feature in infrared, it has already experienced active formation of low-mass stars in an early stage of clump evolution.
We characterize the Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey and the Mopra telescope at 90 GHz. We combine repeated position-switched observations of the source G300.968+01.145 with a map of the same source in order to estimate the poi nting reliability of the position-switched observations and, by extension, the MALT90 survey; we estimate our pointing uncertainty to be 8 arcseconds. We model the two strongest sources of systematic gain variability as functions of elevation and time-of-day and quantify the remaining absolute flux uncertainty. Corrections based on these two variables reduce the scatter in repeated observations from 12-25% down to 10-17%. We find no evidence for intrinsic source variability in G300.968+01.145. For certain applications, the corrections described herein will be integral for improving the absolute flux calibration of MALT90 maps and other observations using the Mopra telescope at 90 GHz.
ALMA will revolutionize our understanding of star formation within our galaxy, but before we can use ALMA we need to know where to look. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey is a large international project to map the molecular line emission of over 2,000 dense clumps in the Galactic plane. MALT90 serves as a pathfinder for ALMA, providing a large public database of dense molecular clumps associated with high-mass star formation. In this proceedings, we describe the survey parameters and share early science highlights from the survey, including (1) a comparison between galactic and extragalactic star formation relations, (2) chemical trends in MALT90 clumps, (3) the distribution of high-mass star formation in the Milky Way, and (4) a discussion of the Brick, the target of successful ALMA Cycle 0 and Cycle 1 proposals.
We investigate the shape of the extinction law in two 1-degree square fields of the Perseus Molecular Cloud complex. We combine deep red-optical (r, i, and z-band) observations obtained using Megacam on the MMT with UKIDSS near-infrared (J, H, and K- band) data to measure the colours of background stars. We develop a new hierarchical Bayesian statistical model, including measurement error, intrinsic colour variation, spectral type, and dust reddening, to simultaneously infer parameters for individual stars and characteristics of the population. We implement an efficient MCMC algorithm utilising generalised Gibbs sampling to compute coherent probabilistic inferences. We find a strong correlation between the extinction (Av) and the slope of the extinction law (parameterized by Rv). Because the majority of the extinction toward our stars comes from the Perseus molecular cloud, we interpret this correlation as evidence of grain growth at moderate optical depths. The extinction law changes from the diffuse value of Rv = 3 to the dense cloud value of Rv = 5 as the column density rises from Av = 2 mags to Av = 10 mags. This relationship is similar for the two regions in our study, despite their different physical conditions, suggesting that dust grain growth is a fairly universal process.
We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near infrared (2MASS and UKIDSS) surveys. VLBI parallax measurements of masers around massive young s tars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.
We describe a pilot survey conducted with the Mopra 22-m radio telescope in preparation for the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). We identified 182 candidate dense molecular clumps using six different selection criteria and mapped each source simultaneously in 16 different lines near 90 GHz. We present a summary of the data and describe how the results of the pilot survey shaped the design of the larger MALT90 survey. We motivate our selection of target sources for the main survey based on the pilot detection rates and demonstrate the value of mapping in multiple lines simultaneously at high spectral resolution.
We present the chemistry, temperature, and dynamical state of a sample of 193 dense cores or core candidates in the Perseus Molecular cloud and compare the properties of cores associated with young stars and clusters with those which are not. The com bination of our NH3 and CCS observations with previous millimeter, sub-millimeter, and Spitzer data available for this cloud enable us both to determine core properties precisely and to accurately classify cores as starless or protostellar. The properties of cores in different cluster environments and before-and-after star formation provide important constraints on simulations of star-formation, particularly under the paradigm that the essence of star formation is set by the turbulent formation of prestellar cores. We separate the influence of stellar content from that of cluster environment and find that cores within clusters have (1) higher kinetic temperatures and (2) lower fractional abundances of CCS and NH3. Cores associated with protostars have (1) slightly higher kinetic temperatures (2) higher NH3 excitation temperatures), (3) are at higher column density, have (4) slightly more non-thermal/turbulent NH3 linewidths, have (5) higher masses and have (6) lower fractional abundance of CCS. We find that neither cluster environment nor protostellar content makes a significant difference to the dynamical state of cores as estimated by the virial parameter -- most cores in each category are gravitationally bound. Overall, cluster environment and protostellar content have a smaller influence on the properties of the cores than is typically assumed, and the variation within categories is larger than the differences between categories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا