ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. A s such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (i) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (ii) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.
The one-body reduced density matrix $gamma$ plays a fundamental role in describing and predicting quantum features of bosonic systems, such as Bose-Einstein condensation. The recently proposed reduced density matrix functional theory for bosonic grou nd states establishes the existence of a universal functional $mathcal{F}[gamma]$ that recovers quantum correlations exactly. Based on a novel decomposition of $gamma$, we have developed a method to design reliable approximations for such universal functionals: our results suggest that for translational invariant systems the constrained search approach of functional theories can be transformed into an unconstrained problem through a parametrization of an Euclidian space. This simplification of the search approach allows us to use standard machine-learning methods to perform a quite efficient computation of both $mathcal{F}[gamma]$ and its functional derivative. For the Bose-Hubbard model, we present a comparison between our approach and Quantum Monte Carlo.
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the c omputational scaling of traditional local or semi-local approximations. It therefore holds the promise of solving some of the delocalization problems that plague density-functional theory, while maintaining the computational efficiency that characterizes the Kohn-Sham equations. Furthermore, by using automatic differentiation, a capability present in modern machine-learning frameworks, we impose the exact mathematical relation between the exchange-correlation energy and the potential, leading to a fully consistent method. We demonstrate the feasibility of our approach by looking at one-dimensional systems with two strongly-correlated electrons, where density-functional methods are known to fail, and investigate the behavior and performance of our functional by varying the degree of non-locality.
We present an textit{ab initio} theory for superconductors, based on a unique mapping between the statistical density operator at equilibrium, on the one hand, and the corresponding one-body reduced density matrix $gamma$ and the anomalous density $c hi$, on the other. This new formalism for superconductivity yields the existence of a universal functional $mathfrak{F}_beta[gamma,chi]$ for the superconductor ground state, whose unique properties we derive. We then prove the existence of a Kohn-Sham system at finite temperature and derive the corresponding Bogoliubov-de Gennes-like single particle equations. By adapting the decoupling approximation from density functional theory for superconductors we bring these equations into a computationally feasible form. Finally, we use the existence of the Kohn-Sham system to extend the Sham-Schluter connection and derive a first exchange-correlation functional for our theory. This reduced density matrix functional theory for superconductors has the potential of overcoming some of the shortcomings and fundamental limitations of density functional theory of superconductivity.
Aiming at a unified treatment of correlation and inhomogeneity effects in superconductors, Oliveira, Gross and Kohn proposed in 1988 a density functional theory for the superconducting state. This theory relies on the existence of a Kohn-Sham scheme, i.e., an auxiliary noninteracting system with the same electron and anomalous densities of the original superconducting system. However, the question of noninteracting $v$-representability has never been properly addressed and the existence of the Kohn-Sham system has always been assumed without proof. Here, we show that indeed such a noninteracting system does not exist in at zero temperature. In spite of this result, we also show that the theory is still able to yield good results, although in the limit of weakly correlated systems only.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا