ترغب بنشر مسار تعليمي؟ اضغط هنا

We establish a testbed system for the development of high-sensitivity Electron Spin Resonance (ESR) techniques for small samples at cryogenic temperatures. Our system consists of a Niobium Nitride thin-film planar superconducting microresonator desig ned to have a concentrated mode volume to couple to a small amount of paramagnetic material, and to be resilient to magnetic fields of up to 400 mT. At 65 mK we measure high-cooperativity coupling ($C approx 19$) to an organic radical microcrystal containing $10^{12}$ spins in a pico-litre volume. We detect the spin-lattice decoherence rate via the dispersive frequency shift of the resonator. Techniques such as these could be suitable for applications in quantum information as well as for pulsed ESR interrogation of very few spins and could provide insights into the surface chemistry of, for example, the material defects in superconducting quantum processors.
We perform an experimental and numerical study of dielectric loss in superconducting microwave resonators at low temperature. Dielectric loss, due to two-level systems, is a limiting factor in several applications, e.g. superconducting qubits, Joseph son parametric amplifiers, microwave kinetic-inductance detectors, and superconducting single-photon detectors. Our devices are made of disordered NbN, which, due to magnetic-field penetration, necessitates 3D finite-element simulation of the Maxwell--London equations at microwave frequencies to accurately model the current density and electric field distribution. From the field distribution, we compute the geometric filling factors of the lossy regions in our resonator structures and fit the experimental data to determine the intrinsic loss tangents of its interfaces and dielectrics. We emphasise that the loss caused by a spin-on-glass resist such as hydrogen silsesquioxane (HSQ), used for ultrahigh lithographic resolution relevant to the fabrication of nanowires, and find that, when used, HSQ is the dominant source of loss, with a loss tangent of $delta^i_{HSQ} = 8 times 10^{-3}$.
We benchmark the decoherence of superconducting qubits to examine the temporal stability of energy-relaxation and dephasing. By collecting statistics during measurements spanning multiple days, we find the mean parameters $overline{T_{1}}$ = 49 $mu$s and $overline{T_{2}^{*}}$ = 95 $mu$s, however, both of these quantities fluctuate explaining the need for frequent re-calibration in qubit setups. Our main finding is that fluctuations in qubit relaxation are local to the qubit and are caused by instabilities of near-resonant two-level-systems (TLS). Through statistical analysis, we determine switching rates of these TLS and observe the coherent coupling between an individual TLS and a transmon qubit. Finally, we find evidence that the qubits frequency stability is limited by capacitance noise. Importantly, this produces a 0.8 ms limit on the pure dephasing which we also observe. Collectively, these findings raise the need for performing qubit metrology to examine the reproducibility of qubit parameters, where these fluctuations could affect qubit gate fidelity.
Hybrid superconducting--spin systems offer the potential to combine highly coherent atomic quantum systems with the scalability of superconducting circuits. To fully exploit this potential requires a high quality-factor microwave resonator, tunable i n frequency and able to operate at magnetic fields optimal for the spin system. Such magnetic fields typically rule out conventional Al-based Josephson junction devices that have previously been used for tunable high-$Q$ microwave resonators. The larger critical field of niobium (Nb) allows microwave resonators with large field resilience to be fabricated. Here, we demonstrate how constriction-type weak links, patterned in parallel into the central conductor of a Nb coplanar resonator using a neon focused ion beam (FIB), can be used to implement a frequency-tunable resonator. We study transmission through two such devices and show how they realise high quality factor, tunable, field resilient devices which hold promise for future applications coupling to spin systems.
We demonstrate that a high kinetic inductance disordered superconductor can realize a low microwave loss, non-dissipative circuit element with an impedance greater than the quantum resistance ($R_Q = h/4e^2 simeq 6.5kOmega$). This element, known as a superinductor, can produce a quantum circuit where charge fluctuations are suppressed. The superinductor consists of a 40 nm wide niobium nitride nanowire and exhibits a single photon quality factor of $2.5 times 10^4$. Furthermore, by examining loss rates, we demonstrate that the dissipation of our nanowire devices can be fully understood in the framework of two-level system loss.
The loss and noise mechanisms of superconducting resonators are useful tools for understanding decoherence in superconducting circuits. While the loss mechanisms have been heavily studied, noise in superconducting resonators has only recently been in vestigated. In particular, there is an absence of literature on noise in the single photon limit. Here, we measure the loss and noise of an aluminium on silicon quarter-wavelength ($lambda/4$) resonator in the single photon regime.
We present low-temperature measurements of low-loss superconducting nanowire-embedded resonators in the low-power limit relevant for quantum circuits. The superconducting resonators are embedded with superconducting nanowires with widths down to 20nm using a neon focused ion beam. In the low-power limit, we demonstrate an internal quality factor up to 3.9x10^5 at 300mK [implying a two-level-system-limited quality factor up to 2x10^5 at 10 mK], not only significantly higher than in similar devices but also matching the state of the art of conventional Josephson-junction-embedded resonators. We also show a high sensitivity of the nanowire to stray infrared photons, which is controllable by suitable precautions to minimize stray photons in the sample environment. Our results suggest that there are excellent prospects for superconducting-nanowire-based quantum circuits.
$1/f$ noise caused by microscopic Two-Level Systems (TLS) is known to be very detrimental to the performance of superconducting quantum devices but the nature of these TLS is still poorly understood. Recent experiments with superconducting resonators indicates that interaction between TLS in the oxide at the film-substrate interface is not negligible. Here we present data on the loss and $1/f$ frequency noise from two different Nb resonators with and without Pt capping and discuss what conclusions can be drawn regarding the properties of TLS in amorphous oxides. We also estimate the concentration and dipole moment of the TLS.
Slow noise processes, with characteristic timescales ~1s, have been studied in planar superconducting resonators. A frequency locked loop is employed to track deviations of the resonator centre frequency with high precision and bandwidth. Comparative measurements are made in varying microwave drive, temperature and between bare resonators and those with an additional dielectric layer. All resonators are found to exhibit flicker frequency noise which increases with decreasing microwave drive. We also show that an increase in temperature results in a saturation of flicker noise in resonators with an additional dielectric layer, while bare resonators stop exhibiting flicker noise instead showing a random frequency walk process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا