ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric Scaling of Two-Level-System Loss in Superconducting Resonators

299   0   0.0 ( 0 )
 نشر من قبل David Niepce
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an experimental and numerical study of dielectric loss in superconducting microwave resonators at low temperature. Dielectric loss, due to two-level systems, is a limiting factor in several applications, e.g. superconducting qubits, Josephson parametric amplifiers, microwave kinetic-inductance detectors, and superconducting single-photon detectors. Our devices are made of disordered NbN, which, due to magnetic-field penetration, necessitates 3D finite-element simulation of the Maxwell--London equations at microwave frequencies to accurately model the current density and electric field distribution. From the field distribution, we compute the geometric filling factors of the lossy regions in our resonator structures and fit the experimental data to determine the intrinsic loss tangents of its interfaces and dielectrics. We emphasise that the loss caused by a spin-on-glass resist such as hydrogen silsesquioxane (HSQ), used for ultrahigh lithographic resolution relevant to the fabrication of nanowires, and find that, when used, HSQ is the dominant source of loss, with a loss tangent of $delta^i_{HSQ} = 8 times 10^{-3}$.

قيم البحث

اقرأ أيضاً

We numerically and experimentally investigate the phononic loss for superconducting resonators fabricated on a piezoelectric substrate. With the help of finite element method simulations, we calculate the energy loss due to electromechanical conversi on into bulk and surface acoustic waves. This sets an upper limit for the resonator internal quality factor $Q_i$. To validate the simulation, we fabricate quarter wavelength coplanar waveguide resonators on GaAs and measure $Q_i$ as function of frequency, power and temperature. We observe a linear increase of $Q_i$ with frequency, as predicted by the simulations for a constant electromechanical coupling. Additionally, $Q_i$ shows a weak power dependence and a negligible temperature dependence around 10$,$mK, excluding two level systems and non-equilibrium quasiparticles as the main source of losses at that temperature.
The coherence of state-of-the-art superconducting qubit devices is predominantly limited by two-level-system defects, found primarily at amorphous interface layers. Reducing microwave loss from these interfaces by proper surface treatments is key to push the device performance forward. Here, we study niobium resonators after removing the native oxides with a hydrofluoric acid etch. We investigate the reappearance of microwave losses introduced by surface oxides that grow after exposure to the ambient environment. We find that losses in quantum devices are reduced by an order of magnitude, with internal Q-factors reaching up to 7 $cdot$ 10$^6$ in the single photon regime, when devices are exposed to ambient conditions for 16 min. Furthermore, we observe that Nb2O5 is the only surface oxide that grows significantly within the first 200 hours, following the extended Cabrera-Mott growth model. In this time, microwave losses scale linearly with the Nb$_2$O$_5$ thickness, with an extracted loss tangent tan$delta$ = 9.9 $cdot$ 10$^{-3}$. Our findings are of particular interest for devices spanning from superconducting qubits, quantum-limited amplifiers, microwave kinetic inductance detectors to single photon detectors.
We present a method to synthesize an arbitrary quantum state of two superconducting resonators. This state-synthesis algorithm utilizes a coherent interaction of each resonator with a tunable artificial atom to create entangled quantum superpositions of photon number (Fock) states in the resonators. We theoretically analyze this approach, showing that it can efficiently synthesize NOON states, with large photon numbers, using existing technology.
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identifi cation of low loss fabrication techniques, materials, and thin film dielectrics is critical to achieving scalable architectures for superconducting quantum computing. Superconducting microwave resonators provide a convenient qubit proxy for assessing performance and studying TLS loss and other mechanisms relevant to superconducting circuits such as non-equilibrium quasiparticles and magnetic flux vortices. In this review article, we provide an overview of considerations for designing accurate resonator experiments to characterize loss, including applicable types of loss, cryogenic setup, device design, and methods for extracting material and interface losses, summarizing techniques that have been evolving for over two decades. Results from measurements of a wide variety of materials and processes are also summarized. Lastly, we present recommendations for the reporting of loss data from superconducting microwave resonators to facilitate materials comparisons across the field.
112 - M. Bhattacharya , K. D. Osborn , 2011
We perform a quantum mechanical analysis of superconducting resonators subject to dielectric loss arising from charged two-level systems. We present numerical and analytical descriptions of the dynamics of energy decay from the resonator within the J aynes-Cummings model. Our analysis allows us to distinguish the strong and weak coupling regimes of the model and to describe within each regime cases where the two-level system is unsaturated or saturated. We find that the quantum theory agrees with the classical model for weak coupling. However, for strong coupling the quantum theory predicts lower loss than the classical theory in the unsaturated regime. Also, in contrast to the classical theory, the photon number at which saturation occurs in the strong coupling quantum theory is independent of the coupling between the resonator and the two-level system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا