ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaugephobic Higgs model provides an interpolation between three different models of electroweak symmetry breaking: Higgsless models, Randall-Sundrum models, and the Standard Model. At parameter points between the extremes, Standard Model Higgs si gnals are present at reduced rates, and Higgsless Kaluza-Klein excitations are present with shifted masses and couplings, as well as signals from exotic quarks necessary to protect the Zbb coupling. Using a new implementation of the model in SHERPA, we show the LHC signals which differentiate the generic Gaugephobic Higgs model from its limiting cases. These are all signals involving a Higgs coupling to a Kaluza-Klein gauge boson or quark. We identify the clean signal $p p to W^(i) to W H$ mediated by a Kaluza-Klein W, which can be present at large rates and is enhanced for even Kaluza-Klein numbers. Due to the very hard lepton coming from the W decay, this signature has little background, and provides a better discovery channel for the Higgs than any of the Standard Model modes, over its entire mass range. A Higgs radiated from new heavy quarks also has large rates, but is much less promising due to very high multiplicity final states.
We explore non-standard Higgs phenomenology in the Gaugephobic Higgs model in which the Higgs can be lighter than the usually quoted current experimental bound. The Higgs propagates in the bulk of a 5D space-time and Electroweak Symmetry Breaking occ urs by a combination of boundary conditions in the extra dimension and an elementary Higgs. The Higgs can thus have a significantly suppressed coupling to the other Standard Model fields. A large enough suppression can be found to escape all limits and allow for a Higgs of any mass, which would be associated with the discovery of W and Z Kaluza-Klein resonances at the LHC. The Higgs can be precisely discovered at B-factories while the LHC would be insensitive to it due to high backgrounds. In this letter we study the Higgs discovery mode in Upsilon(3S), Upsilon(2S), and Upsilon(1S) decays, and the model parameter space that will be probed by BaBar, Belle, and CLEO data. In the absence of an early discovery of a heavy Higgs at the LHC, A Super-B factory would be an excellent option to further probe this region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا