ترغب بنشر مسار تعليمي؟ اضغط هنا

123 - John J. Tobin 2015
We present a CARMA 1.3 mm continuum survey toward 9 Class 0 protostars in the Perseus molecular cloud at $sim$0.3$^{primeprime}$ (70 AU) resolution. This study approximately doubles the number of Class 0 protostars observed with spatial resolutions $ <$ 100 AU at millimeter wavelengths, enabling the presence of protostellar disks and proto-binary systems to be probed. We detect flattened structures with radii $>$ 100 AU around 2 sources (L1448 IRS2 and Per-emb-14) and these sources may be strong disk candidates. Marginally-resolved structures with position angles within 30$^{circ}$ of perpendicular to the outflow are found toward 3 protostars (L1448 IRS3C, IRAS 03282+3035, and L1448C) and are considered disk candidates. Two others (L1448 IRS3B and IRAS 03292+3039) have resolved structure, possibly indicative of massive inner envelopes or disks; L1448 IRS3B also has a companion separated by 0.9$^{primeprime}$ ($sim$210 AU). IC348-MMS does not have well-resolved structure and the candidate first hydrostatic core L1451-MMS is marginally resolved on 1$^{primeprime}$ scales. The strong disk candidate sources were followed-up with C$^{18}$O ($J=2rightarrow1$) observations, detecting velocity gradients consistent with rotation, but it is unclear if the rotation is Keplerian. We compare the observed visibility amplitudes to radiative transfer models, finding that visibility amplitude ratios suggest a compact component (possibly a disk) is necessary for 5 of 9 Class 0 sources; envelopes alone may explain the other 4 systems. We conclude that there is evidence for the formation of large disks in the Class 0 phase with a range of radii and masses dependent upon their initial formation conditions.
65 - John J. Tobin 2015
We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 meter MMT and Magellan telescopes. We report radial velocities for 695 stars, of whic h approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from F{H u}r{e}sz et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular ($^{13}$CO) gas. The detection of Lithium absorption and/or infrared excesses in this blue-shifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation.
74 - John J. Tobin 2014
We present CARMA 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample (Stutz et al.). These objects are characte rized by very red 24 micron to 70 micron colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from 4 protostars and 1 starless core in the fields toward the PBRS; we also report 1 new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of $sim$5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv-distance, with more than 50% of the source emission arising from radii $<$ 1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with $rho$~$propto$~R$^{-2.5}$. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power-law. The large amount of mass on scales $<$ 1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.
59 - John J. Tobin 2013
We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave A stronomy (CARMA). The VLA observations were taken at wavelengths of $lambda = 7.3$ mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of $sim$0farcs06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at $lambda = 1.3$ mm with a best resolution of $sim0farcs3$ (100 AU), and the CB230 IRS1 observations were taken at $lambda = 3.4$ mm with a best resolution of $sim$3arcsec (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of $sim$0farcs3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R $>$ 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with $sim20$ AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii $< 20$ AU.
146 - John J. Tobin 2013
We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at 870 micron and 3.4 mm from the Submillimeter Array (SMA) and Combined Array for Research in Millimeter Astronomy (CARMA). We det ect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M_sun, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed; alpha ~ 2, implying a dust opacity spectral index beta ~ 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved Larcmin image, spectral energy distribution, and mid-infrared spectrum. The best fitting model has a disk radius of R = 125 AU, is highly flared (H ~ R^1.3), has a radial density profile rho ~ R^-2.5, and has a mass of 0.0075 M_sun. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 is comparable to disks around pre-main sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of ~1 micron-sized dust grains.
We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument onboard the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the He rschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 um and 160 um that are either too faint (m24 > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 um band. We find that the 11 reddest protostar candidates with log (lambda F_lambda 70) / (lambda F_lambda 24) > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 um fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log (lambda F_lambda 70) / (lambda F_lambda 24) > 1.65; we name these sources PACS Bright Red sources, or PBRs. Our analysis reveals that the PBRs sample is composed of Class 0 like sources characterized by very red SEDs (T_bol < 45 K) and large values of sub-millimeter fluxes (L_smm/L_bol > 0.6%). Modified black-body fits to the SEDs provide lower limits to the envelope masses of 0.2 M_sun to 2 M_sun and luminosities of 0.7 L_sun to 10 L_sun. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.
Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. (2011) to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I 10830 absorption, strong H2O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from IRTF, 2MASS, HST, Spitzer, WISE, Herschel, and APEX that span from 1 to 70 microns pre-outburst and from 1 to 870 microns post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from about 2x10^-6 M_sun/yr to about 10^-5 M_sun/yr during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L_sun, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.
We model Spitzer Space Telescope observations of the Taurus Class 0 protostar L1527 IRS (IRAS 04368+2557) to provide constraints on its protostellar envelope structure. The nearly edge-on inclination of L1527 IRS, coupled with the highly spatially-re solved near to mid-infrared images of this object and the detailed IRS spectrum, enable us to constrain the outflow cavity geometry quite well, reducing uncertainties in the other derived parameters. The mid-infrared scattered light image shows a bright central source within a dark lane; the aspect ratio of this dark lane is such that it appears highly unlikely to be a disk shadow. In modeling this dark lane, we conclude that L1527 IRS is probably not described by a standard TSC envelope with simple bipolar cavities. We find it necessary to model the dark lane and central source as a modified inner envelope structure. This structure may be due either to a complex wind-envelope interaction or induced by the central binary. To fit the overall SED, we require the central source to have a large near to mid-infrared excess, suggesting substantial disk accretion. Our model reproduces the overall morphology and surface brightness distribution of L1527 IRS fairly well, given the limitations of using axisymmetric models to fit the non-axisymmetric real object, and the derived envelope infall rates are in reasonable agreement with some other investigations. IRAC observations of L1527 IRS taken 12 months apart show variability in total flux and variability in the opposing bipolar cavities, suggesting asymmetric variations in accretion. We also provide model images at high resolution for comparison to future observations with current ground-based instrumentation and future space-based telescopes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا