ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the Youngest Herschel-detected Protostars I. Envelope Structure Revealed by CARMA Dust Continuum Observations

111   0   0.0 ( 0 )
 نشر من قبل John Tobin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John J. Tobin




اسأل ChatGPT حول البحث

We present CARMA 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample (Stutz et al.). These objects are characterized by very red 24 micron to 70 micron colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from 4 protostars and 1 starless core in the fields toward the PBRS; we also report 1 new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of $sim$5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv-distance, with more than 50% of the source emission arising from radii $<$ 1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with $rho$~$propto$~R$^{-2.5}$. Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power-law. The large amount of mass on scales $<$ 1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved.



قيم البحث

اقرأ أيضاً

We present a 0.15$^{primeprime}$ resolution (21 au) ALMA 870 $mu$m continuum survey of 25 pointings containing 31 young stellar objects in the Ophiuchus molecular clouds. Using the dust continuum as a proxy for dust mass and circumstellar disk radius in our sample, we report a mean mass of 2.8$^{+2.1}_{-1.3}$ and 2.5$^{+9.2}_{-1.1}$ M$_{oplus}$ and a mean radii of 23.5$^{+1.8}_{-1.2}$ and 16.5$^{+2.8}_{-0.9}$ au, for Class I and Flat spectrum protostars, respectively. In addition, we calculate the multiplicity statistics of the dust surrounding young stellar objects in Ophiuchus. The multiplicity fraction (MF) and companion star fraction (CSF) of the combined Class I and Flats based solely on this work is 0.25 $pm$ 0.09 and 0.33 $pm$ 0.10, respectively, which are consistent with the values for Perseus and Orion. While we see clear differences in mass and radius between the Ophiuchus and Perseus/Orion protostellar surveys, we do not see any significant differences in the multiplicities of the various regions. We posit there are some differences in the conditions for star formation in Ophiuchus that strongly affects disk size (and consequently disk mass), but does not affect system multiplicity, which could imply important variation in planet formation processes.
159 - John J. Tobin 2016
We present CARMA CO (J=1-0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS) (Stutz et al. 2013). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectral scans from 55 micron to 200 micron. Outflows are detected in CO (J=1-0) from 8 of 14 PBRS, with two additional tentative detections; outflows are also detected from the outbursting protostar HOPS 223 (V2775 Ori) and the Class I protostar HOPS 68. The outflows have a range of morphologies, some are spatially compact, <10000 AU in extent, while others extend beyond the primary beam. The outflow velocities and morphologies are consistent with being dominated by intermediate inclination angles (80 deg > i > 20 deg). This confirms the interpretation of the very red 24 micron to 70 micron colors of the PBRS as a signpost of high envelope densities, with only one (possibly two) cases of the red colors resulting from edge-on inclinations. We detect high-J (J_up > 13) CO lines and/or H_2O lines from 5 of 8 PBRS and only for those with detected CO outflows. The far-infrared CO rotation temperatures of the detected PBRS are marginally colder (~230 K) than those observed for most protostars (~300 K), and only one of these 5 PBRS has detected [OI] 63 micron emission. The high envelope densities could be obscuring some [OI] emission and cause a ~20 K reduction to the CO rotation temperatures.
257 - Odysseas Dionatos 2020
Large scale spectral maps of star forming regions enable the comparative study of the gas excitation around an ensemble of sources at a common frame of reference, providing direct insights in the multitude of processes involved. In this paper we empl oy spectral-line maps to decipher the excitation, the kinematical and dynamical processes in NGC 1333 as revealed by a number of different emission lines, aiming to set a reference for the applicability of tracers in constraining diverse physical processes. We reconstruct line maps for H$_2$ , CO, H$_2$O and C$^+$ using data obtained with the Spitzer-IRS and Herschel HIFI-SPIRE. We compare the morphological features of the maps and derive the gas excitation for regions of interest employing LTE and non-LTE methods. We also calculate the kinematical and dynamical properties for each outflow tracer consistently for all outflows in NGC 1333. We finally measure the water abundance in outflows with respect to carbon monoxide and molecular hydrogen. CO and H$_2$ are highly excited around B-stars and at lower levels trace protostellar outflows. H$_2$O emission is dominated by a moderately fast component associated with outflows. Intermediate J CO lines appear brightest at the locations traced by a narrow H$_2$O component, indicating that beyond the dominating collisional processes, a secondary, radiative excitation component can also be active. The morphology, kinematics, excitation and abundance variations of water are consistent with its excitation and partial dissociation in shocks. Water abundance ranges between 5 x 10$^{-7}$ and 10$^{-5}$, with the lower values being more representative. Water is brightest and most abundant around IRAS 4A which is consistent with the latter hosting a hot corino source. Finally, the outflow mass flux is found highest for CO and decreases by one and two orders of magnitude for H$_2$ and H$_2$O, respectively.
We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument onboard the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the He rschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 um and 160 um that are either too faint (m24 > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 um band. We find that the 11 reddest protostar candidates with log (lambda F_lambda 70) / (lambda F_lambda 24) > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 um fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log (lambda F_lambda 70) / (lambda F_lambda 24) > 1.65; we name these sources PACS Bright Red sources, or PBRs. Our analysis reveals that the PBRs sample is composed of Class 0 like sources characterized by very red SEDs (T_bol < 45 K) and large values of sub-millimeter fluxes (L_smm/L_bol > 0.6%). Modified black-body fits to the SEDs provide lower limits to the envelope masses of 0.2 M_sun to 2 M_sun and luminosities of 0.7 L_sun to 10 L_sun. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.
165 - T. Khouri , A. de Koter , L. Decin 2014
Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essent ial for understanding AGB evolution, including the rate of mass loss and isotopic ratios. We modeled the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments onboard the Herschel Space Observatory and ground-based telescopes. $^{12}$CO and $^{13}$CO lines are used to constrain the intrinsic $^{12}$C/$^{13}$C ratio from resolved HIFI lines. The acceleration of the outflow up to about 5.5 km/s is quite slow and can be represented by a beta-type velocity law with index 5. Beyond this point, acceleration up the terminal velocity of 7 km/s is faster. Using the J=10-9, 9-8, and 6-5 transitions, we find an intrinsic $^{12}$C/$^{13}$C ratio of $18pm10$ for W Hya, where the error bar is mostly due to uncertainties in the $^{12}$CO abundance and the stellar flux around 4.6 $mu$m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at about 500 stellar radii. The radial dust emission intensity profile measured by PACS images at 70 $mu$m shows substantially stronger emission than our model predicts beyond 20 arcsec. The initial slow acceleration of the wind implies inefficient wind driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M$_odot$ or more. However, the uncertainty in the main-sequence mass derived based on this isotopologic ratio is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا