ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the local space density of double degenerate binary systems is a complementary approach to broad sky surveys of double degenerates to determine the expected rates of white dwarf binary mergers, in particular those that may evolve into other observable phenomena such as extreme helium stars, Am CVn systems, and supernovae Ia. However, there have been few such systems detected in local space. We report here the discovery that WD 1242$-$105, a nearby bright WD, is a double-line spectroscopic binary consisting of two degenerate DA white dwarfs of similar mass and temperature, despite it previously having been spectroscopically characterized as a single degenerate. Follow-up photometry, spectroscopy, and trigonometric parallax have been obtained in an effort to determine the fundamental parameters of each component of this system. The binary has a mass ratio of 0.7 and a trigonometric parallax of 25.5 mas, placing it at a distance of 39 pc. The systems total mass is 0.95 M$_odot$ and has an orbital period of 2.85 hours, making it the strongest known gravitational wave source ($log h = -20.78$) in the mHz regime. Because of its orbital period and total mass, WD 1242$-$105 is predicted to merge via gravitational radiation on a timescale of 740 Myr, which will most likely not result in a catastrophic explosion.
We present an adaptive optics imaging detection of the HD 32297 debris disk at L (3.8 microns) obtained with the LBTI/LMIRcam infrared instrument at the LBT. The disk is detected at signal-to-noise per resolution element ~ 3-7.5 from ~ 0.3-1.1 (30-12 0 AU). The disk at L is bowed, as was seen at shorter wavelengths. This likely indicates the disk is not perfectly edge-on and contains highly forward scattering grains. Interior to ~ 50 AU, the surface brightness at L rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at $lesssim$ 50 AU. Comparing the color of the outer (50 $< r$/AU $< 120$) portion of the disk at L with archival HST/NICMOS images of the disk at 1-2 microns allows us to test the recently proposed cometary grains model of Donaldson et al. 2013. We find that the model fails to match the disks surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.9). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 microns is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.
We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSSJ 030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longwards of 3-microns. A T_eff of 8940K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 Rsun out to <0.8 AU, with a total mass of ~10^20 g. We also construct WISE and follow-up ground-based near-infrared light curves of the system, and find variability in the K-band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to a) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary system or b) dust condensing from the companions wind. The high inclination of this system, and the presence of dust, make it an attractive target for M dwarf transit surveys and long term photometric monitoring.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا