ترغب بنشر مسار تعليمي؟ اضغط هنا

47 - Mu Wang , John F. Brady 2015
In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stok esian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for the wave-space mobility computation. To meet the performance requirement of dynamic simulations, we use Graphic Processing Units (GPU) to evaluate the suspension mobility, and achieve an order of magnitude speedup compared to a CPU implementation. For further speedup, we develop a novel far-field block-diagonal preconditioner to reduce the far-field evaluations in the iterative solver, and SEASD-nf, a polydisperse extension of the mean-field Brownian approximation of Banchio & Brady [J. Chem. Phys. 118 (2003) 10323]. We extensively discuss implementation and parameter selection strategies in SEASD, and demonstrate the spectral accuracy in the mobility evaluation and the overall $mathcal{O}(Nlog N)$ computation scaling. We present three computational examples to further validate SEASD and SEASD-nf in monodisperse and bidisperse suspensions: the short-time transport properties, the equilibrium osmotic pressure and viscoelastic moduli, and the steady shear Brownian rheology. Our validation results show that the agreement between SEASD and SEASD-nf is satisfactory over a wide range of parameters, and also provide significant insight into the dynamics of polydisperse colloidal suspensions.
We introduce fractal liquids by generalizing classical liquids of integer dimensions $d = 1, 2, 3$ to a fractal dimension $d_f$. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same non-i nteger dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semi-analytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.
67 - Mu Wang , John F. Brady 2014
We present a comprehensive computational study of the short-time transport properties of bidisperse neutral colloidal suspensions and the corresponding porous media. Our study covers bidisperse particle size ratios up to $4$, and total volume fractio ns up to and beyond the monodisperse hard-sphere close packing limit. The many-body hydrodynamic interactions are computed using conventional Stokesian Dynamics (SD) via a Monte-Carlo approach. We address suspension properties including the short-time translational and rotational self-diffusivities, the instantaneous sedimentation velocity, the wavenumber-dependent partial hydrodynamic functions, and the high-frequency shear and bulk viscosities; and porous media properties including the permeability and the translational and rotational hindered diffusivities. We carefully compare the SD computations with existing theoretical and numerical results. For suspensions, we also explore the range of validity of various approximation schemes, notably the Pairwise Additive (PA) approximations with the Percus-Yevick structural input. We critically assess the strengths and weaknesses of the SD algorithm for various transport properties. For very dense systems, we discuss in detail the interplay between the hydrodynamic interactions and the structures due to the presence of a second species of a different size.
Diffusion in bidisperse Brownian hard-sphere suspensions is studied by Stokesian Dynamics (SD) computer simulations and a semi-analytical theoretical scheme for colloidal short-time dynamics, based on Beenakker and Mazurs method [Physica 120A, 388 (1 983) & 126A, 349 (1984)]. Two species of hard spheres are suspended in an overdamped viscous solvent that mediates the salient hydrodynamic interactions among all particles. In a comprehensive parameter scan that covers various packing fractions and suspension compositions, we employ numerically accurate SD simulations to compute the initial diffusive relaxation of density modulations at the Brownian time scale, quantified by the partial hydrodynamic functions. A revised version of Beenakker and Mazurs $deltagamma$-scheme for monodisperse suspensions is found to exhibit surprisingly good accuracy, when simple rescaling laws are invoked in its application to mixtures. The so-modified $deltagamma$ scheme predicts hydrodynamic functions in very good agreement with our SD simulation results, for all densities from the very dilute limit up to packing fractions as high as $40%$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا