ترغب بنشر مسار تعليمي؟ اضغط هنا

Theories with both electric and magnetic charges (mutually non-local theories) have several major obstacles to calculating scattering amplitudes. Even when the interaction arises through the kinetic mixing of two, otherwise independent, U(1)s, so tha t all low-energy interactions are perturbative, difficulties remain: using a self-dual, local formalism leads to spurious poles at any finite order in perturbation theory. Correct calculations must show how the spurious poles cancel in observable scattering amplitudes. Consistency requires that one type of charge is confined as a result of one of the U(1)s being broken. Here we show how the constraints of confinement and parity conservation on observable processes manages to cancel the spurious poles in scattering and pair production amplitudes, paving the way for systematic studies of the experimental signatures of dark electric-magnetic processes. Along the way we demonstrate some novel effects in electric-magnetic interactions, including that the amplitude for single photon production of magnetic particles by electric particles vanishes.
Continuum supersymmetry is a class of models in which the supersymmetric partners together with part of the standard model come from a conformal sector, broken in the IR near the TeV scale. Such models not only open new doors for addressing the probl ems of the standard model, but also have unique signatures at hadron colliders, which might explain why we have not yet seen any superpartners at the LHC. Here we use gauge-gravity duality to model the conformal sector, generate collider simulations, and finally analyze continuum gluino signatures at the LHC. Due to the increase in the number of jets produced the bounds are weaker than for the minimal supersymmetric standard model with the same gluino mass threshold.
While the evidence for dark matter continues to grow, the nature of the dark matter remains a mystery. A dark $U(1)_D$ gauge theory can have a small kinetic mixing with the visible photon which provides a portal to the dark sector. Magnetic monopoles of the dark $U(1)_D$ can obtain small magnetic couplings to our photon through this kinetic mixing. This coupling is only manifest below the mass of the dark photon; at these scales the monopoles are bound together by tubes of dark magnetic flux. These flux tubes can produce phase shifts in Aharonov-Bohm type experiments. We outline how this scenario might be realized, examine the existing constraints, and quantify the experimental sensitivity required to detect magnetic dipole dark matter in this novel way.
We consider Fraternal Twin Higgs models where the twin bottom quark, $b$, is much heavier than the twin confinement scale. In this limit aspects of quark bound states, like the mass and binding energy, can be accurately calculated. We show that in th is regime, dark matter can be primarily made of twin baryons containing $b b b$ or, when twin hypercharge is gauged, twin atoms, composed of a baryon bound to a twin $tau$ lepton. We find that there are significant regions of parameter space which are allowed by current constraints but within the realm of detection in the near future. The case with twin atoms can alleviate the tension between dark matter properties inferred from dwarf galaxies and clusters.
Long ago Weinberg showed, from first principles, that the amplitude for a single photon exchange between an electric current and a magnetic current violates Lorentz invariance. The obvious conclusion at the time was that monopoles were not allowed in quantum field theory. Since the discovery of topological monopoles there has thus been a paradox. On the one hand, topological monopoles are constructed in Lorentz invariant quantum field theories, while on the other hand, the low-energy effective theory for such monopoles will reproduce Weinbergs result. We examine a toy model where both electric and magnetic charges are perturbatively coupled and show how soft-photon resummation for hard scattering exponentiates the Lorentz violating pieces to a phase that is the covariant form of the Aharonov-Bohm phase due to the Dirac string. The modulus of the scattering amplitudes (and hence observables) are Lorentz invariant, and when Dirac charge quantization is imposed the amplitude itself is also Lorentz invariant. For closed paths there is a topological component of the phase that relates to aspects of 4D topological quantum field theory.
We explore kinetic mixing between two Abelian gauge theories that have both electric and magnetic charges. When one of the photons becomes massive, novel effects arise in the low-energy effective theory, including the failure of Dirac charge quantiza tion as particles from one sector obtain parametrically small couplings to the photon of the other. We maintain a manifest SL(2,Z) duality throughout our analysis, which is the diagonal subgroup of the dualities of the two un-mixed gauge theories.
We explore a new class of natural models which ensure the one-loop divergences in the Higgs mass are cancelled. The top-partners that cancel the top loop are new gauge bosons, and the symmetry relation that ensures the cancellation arises at an infra red fixed point. Such a cancellation mechanism can, a la Little Higgs models, push the scale of new physics that completely solves the hierarchy problem up to 5-10 TeV. When embedded in a supersymmetric model, the stop and gaugino masses provide the cutoffs for the loops, and the mechanism ensures a cancellation between the stop and gaugino mass dependence of the Higgs mass parameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا