ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse FORS2/VLT $I$-band imaging data to monitor the motions of both components in the nearest known binary brown dwarf WISE J104915.57-531906.1AB (LUH16) over one year. The astrometry is dominated by parallax and proper motion, but with a preci sion of $sim$0.2 milli-arcsecond per epoch we accurately measure the relative position change caused by the orbital motion of the pair. This allows us to directly measure a mass ratio of $q=0.78pm0.10$ for this system. We also search for the signature of a planetary-mass companion around either of the A and B component and exclude at 3-$sigma$ the presence of planets with masses larger than $2,M_mathrm{Jup}$ and orbital periods of 20--300 d. We update the parallax of LUH16 to $500.51pm0.11$ mas, i.e. just within 2 pc. This study yields the first direct constraint on the mass ratio of LUH16 and shows that the system does not harbour any close-in giant planets.
Classical Cepheid variable stars are crucial calibrators of the cosmic distance scale thanks to a relation between their pulsation periods and luminosities. Their archetype, {delta} Cephei, is an important calibrator for this relation. In this paper, we show that {delta} Cephei is a spectroscopic binary based on newly-obtained high-precision radial velocities. We combine these new data with literature data to determine the orbit, which has period 2201 days, semi-amplitude 1.5 km/s, and high eccentricity (e = 0.647). We re-analyze Hipparcos intermediate astrometric data to measure {delta} Cepheis parallax ($varpi = 4.09 pm 0.16$ mas) and find tentative evidence for an orbital signature, although we cannot claim detection. We estimate that Gaia will fully determine the astrometric orbit. Using the available information from spectroscopy, velocimetry, astrometry, and Geneva stellar evolution models ($M_{delta Cep} ~ 5.0 - 5.25 M_odot$), we constrain the companion mass to within $0.2 < M_2 < 1.2 M_odot$. We discuss the potential of ongoing and previous interactions between the companion and {delta} Cephei near pericenter passage, informing reported observations of circumstellar material and bow-shock. The orbit may have undergone significant changes due to a Kozai-Lidov mechanism driven by the outer (visual and astrometric) companion HD 213307. Our discovery of {delta} Cepheis nature as a spectroscopic binary exposes a hidden companion and reveals a rich and dynamical history of the archetype of classical Cepheid variables.
The abundance and properties of planets orbiting binary stars - circumbinary planets - are largely unknown because they are difficult to detect with currently available techniques. Results from the Kepler satellite and other studies indicate a minimu m occurrence rate of circumbinary giant planets of ~10 %, yet only a handful are presently known. Here, we study the potential of ESAs Gaia mission to discover and characterise extrasolar planets orbiting nearby binary stars by detecting the binarys periodic astrometric motion caused by the orbiting planet. We expect that Gaia will discover hundreds of giant planets around binaries with FGK dwarf primaries within 200 pc of the Sun, if we assume that the giant planet mass distribution and abundance are similar around binaries and single stars. If on the other hand all circumbinary gas giants have masses lower than two Jupiter masses, we expect only four detections. Gaia is critically sensitive to the properties of giant circumbinary planets and will therefore make the detailed study of their population possible. Gaias precision is such that the distribution in mutual inclination between the binary and planetary orbital planes will be obtained. It also possesses the capacity to establish the frequency of planets across the H-R diagram, both as a function of mass and of stellar evolutionary state from pre-main sequence to stellar remnants. Gaias discoveries can reveal whether a second epoch of planetary formation occurs after the red-giant phase.
We examined six exoplanet host stars with non-standard Hipparcos astrometric solution, which may be indicative of unrecognised orbital motion. Using Hipparcos intermediate astrometric data, we detected the astrometric orbit of HD 5388 at a significan ce level of 99.4 % (2.7 sigma). HD 5388 is a metal-deficient star and hosts a planet candidate with a minimum mass of 1.96 M_J discovered in 2010. We determined its orbit inclination to be i = 178.3 +0.4/-0.7 deg and the corresponding mass of its companion HD 5388 b to be M_2 = 69 +/- 20 M_J. The orbit is seen almost face-on and the companion mass lies at the upper end of the brown-dwarf mass range. A mass lower than 13 M_J was excluded at the 3-sigma level. The astrometric motions of the five other stars had been investigated by other authors revealing two planetary companions, one stellar companion, and two statistically insignificant orbits. We conclude that HD 5388 b is not a planet but most likely a brown-dwarf companion. In addition, we find that the inclinations of the stellar rotation axis and the companions orbital axis differ significantly.
Brown dwarfs are intermediate objects between planets and stars. The lower end of the brown-dwarf mass range overlaps with the one of massive planets and therefore the distinction between planets and brown-dwarf companions may require to trace the in dividual formation process. We present results on new potential brown-dwarf companions of Sun-like stars, which were discovered using CORALIE radial-velocity measurements. By combining the spectroscopic orbits and Hipparcos astrometric measurements, we have determined the orbit inclinations and therefore the companion masses for many of these systems. This has revealed a mass range between 25 and 45 Jupiter masses almost void of objects, suggesting a possible dividing line between massive planets and sub-stellar companions.
The Fringe Sensor Unit (FSU) is the central element of the Phase Referenced Imaging and Micro-arcsecond Astrometry (PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase referenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and successfully servoed the fringe tracking loop during the initial commissioning phase. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time estimates of fringe phase after spatial filtering. A R=20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The FSU was integrated and aligned at the VLTI in summer 2008. It yields phase and group delay measurements at sampling rates up to 2 kHz, which are used to drive the fringe tracking control loop. During the first commissioning runs, the FSU was used to track the fringes of stars with K-band magnitudes as faint as m_K=9.0, using two VLTI Auxiliary Telescopes (AT) and baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) Unit Telescopes (UT) was demonstrated. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is of fundamental importance to achieve the scientific objectives of PRIMA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا