ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological superconductors, such as noncentrosymmetric superconductors with strong spin-orbit coupling, exhibit protected zero-energy surface states, which possess an intricate helical spin structure. We show that this nontrival spin character of th e surface states can be tested experimentally from the absence of certain backscattering processes in Fourier-transform scanning tunneling measurements. A detailed theoretical analysis is given of the quasiparticle scattering interference on the surface of both nodal and fully gapped topological superconductors with different crystal point-group symmetries. We determine the universal features in the interference patterns resulting from magnetic and nonmagnetic scattering processes of the surface quasiparticles. It is shown that Fourier-transform scanning tunneling spectroscopy allows us to uniquely distinguish among different types of topological surface states, such as zero-energy flat bands, arc surface states, and helical Majorana modes, which in turn provides valuable information on the spin and orbital pairing symmetry of the bulk superconducting state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا