ترغب بنشر مسار تعليمي؟ اضغط هنا

The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficientl y high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by {using} micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnets microstructure is optimized.
Deep neural networks are used to model the magnetization dynamics in magnetic thin film elements. The magnetic states of a thin film element can be represented in a low dimensional space. With convolutional autoencoders a compression ratio of 1024:1 was achieved. Time integration can be performed in the latent space with a second network which was trained by solutions of the Landau-Lifshitz-Gilbert equation. Thus the magnetic response to an external field can be computed quickly.
We use a machine learning approach to identify the importance of microstructure characteristics in causing magnetization reversal in ideally structured large-grained Nd$_2$Fe$_{14}$B permanent magnets. The embedded Stoner-Wohlfarth method is used as a reduced order model for determining local switching field maps which guide the data-driven learning procedure. The predictor model is a random forest classifier which we validate by comparing with full micromagnetic simulations in the case of small granular test structures. In the course of the machine learning microstructure analysis the most important features explaining magnetization reversal were found to be the misorientation and the position of the grain within the magnet. The lowest switching fields occur near the top and bottom edges of the magnet. While the dependence of the local switching field on the grain orientation is known from theory, the influence of the position of the grain on the local coercive field strength is less obvious. As a direct result of our findings of the machine learning analysis we show that edge hardening via Dy-diffusion leads to higher coercive fields.
Fast computation of demagnetization curves is essential for the computational design of soft magnetic sensors or permanent magnet materials. We show that a sparse preconditioner for a nonlinear conjugate gradient energy minimizer can lead to a speed up by a factor of 3 and 7 for computing hysteresis in soft magnetic and hard magnetic materials, respectively. As a preconditioner an approximation of the Hessian of the Lagrangian is used, which only takes local field terms into account. Preconditioning requires a few additional sparse matrix vector multiplications per iteration of the nonlinear conjugate gradient method, which is used for minimizing the energy for a given external field. The time to solution for computing the demagnetization curve scales almost linearly with problem size.
In this paper we apply an extended Landau-Lifschitz equation, as introduced by Bav{n}as et al. for the simulation of heat-assisted magnetic recording. This equation has similarities with the Landau-Lifshitz-Bloch equation. The Bav{n}as equation is su pposed to be used in a continuum setting with sub-grain discretization by the finite-element method. Thus, local geometric features and nonuniform magnetic states during switching are taken into account. We implement the Bav{n}as model and test its capability for predicting the recording performance in a realistic recording scenario. By performing recording simulations on 100 media slabs with randomized granular structure and consecutive read back calculation, the write position shift and transition jitter for bit lengths of 10nm, 12nm, and 20nm are calculated.
In this work we investigate the potential of tetragonal L1$_0$ ordered FeNi as candidate phase for rare earth free permanent magnets taking into account anisotropy values from recently synthesized, partially ordered FeNi thin films. In particular, we estimate the maximum energy product ($BH$)$_mathrm{max}$ of L1$_0$-FeNi nanostructures using micromagnetic simulations. The maximum energy product is limited due to the small coercive field of partially ordered L1$_0$-FeNi. Nano-structured magnets consisting of 128 equi-axed, platelet-like and columnar-shaped grains show a theoretical maximum energy product of 228 kJ/m$^3$, 208 kJ/m$^3$, 252 kJ/m$^3$, respectively.
We investigate the switching field distribution and the resulting bit error rate of exchange coupled ferri-/ferromagnetic bilayer island arrays by micromagnetic simulations. Using islands with varying microstructure and anisotropic properties, the in trinsic switching field distribution is computed. The dipolar contribution to the switching field distribution is obtained separately by using a model of a triangular patterned island array resembling $1.4,mathrm{Tb/in}^2$ bit patterned media. Both contributions are computed for different thickness of the soft exchange coupled ferrimagnet and also for ferromagnetic single phase FePt islands. A bit patterned media with a bilayer structure of FeGd($5,mathrm{nm}$)/FePt($5,mathrm{nm}$) shows a bit error rate of $10^{-4}$ with a write field of $1.16,mathrm{T}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا