ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic microstructure machine learning analysis

140   0   0.0 ( 0 )
 نشر من قبل Lukas Exl
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a machine learning approach to identify the importance of microstructure characteristics in causing magnetization reversal in ideally structured large-grained Nd$_2$Fe$_{14}$B permanent magnets. The embedded Stoner-Wohlfarth method is used as a reduced order model for determining local switching field maps which guide the data-driven learning procedure. The predictor model is a random forest classifier which we validate by comparing with full micromagnetic simulations in the case of small granular test structures. In the course of the machine learning microstructure analysis the most important features explaining magnetization reversal were found to be the misorientation and the position of the grain within the magnet. The lowest switching fields occur near the top and bottom edges of the magnet. While the dependence of the local switching field on the grain orientation is known from theory, the influence of the position of the grain on the local coercive field strength is less obvious. As a direct result of our findings of the machine learning analysis we show that edge hardening via Dy-diffusion leads to higher coercive fields.

قيم البحث

اقرأ أيضاً

In materials science and engineering, one is typically searching for materials that exhibit exceptional performance for a certain function, and the number of these materials is extremely small. Thus, statistically speaking, we are interested in the i dentification of *rare phenomena*, and the scientific discovery typically resembles the proverbial hunt for the needle in a haystack.
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant vari ations of several inflow conditions. Specifically, the Local Decomposition Method presented in this paper has been derived to capture nonlinear behaviors resulting from the presence of continuous and discontinuous signals. A combination of unsupervised and supervised learning algorithms is coupled with a physical criterion. It decomposes automatically the input parameter space, from a limited number of high-fidelity simulations, into subspaces. These latter correspond to different flow regimes. A measure of entropy identifies the subspace with the expected strongest non-linear behavior allowing to perform an active resampling on this low-dimensional structure. Local reduced-order models are built on each subspace using Proper Orthogonal Decomposition coupled with a multivariate interpolation tool. The methodology is assessed on the turbulent two-dimensional flow around the RAE2822 transonic airfoil. It exhibits a significant improvement in term of prediction accuracy for the Local Decomposition Method compared with the classical method of surrogate modeling for cases with different flow regimes.
Machine learning technologies are expected to be great tools for scientific discoveries. In particular, materials development (which has brought a lot of innovation by finding new and better functional materials) is one of the most attractive scienti fic fields. To apply machine learning to actual materials development, collaboration between scientists and machine learning is becoming inevitable. However, such collaboration has been restricted so far due to black box machine learning, in which it is difficult for scientists to interpret the data-driven model from the viewpoint of material science and physics. Here, we show a material development success story that was achieved by good collaboration between scientists and one type of interpretable (explainable) machine learning called factorized asymptotic Bayesian inference hierarchical mixture of experts (FAB/HMEs). Based on material science and physics, we interpreted the data-driven model constructed by the FAB/HMEs, so that we discovered surprising correlation and knowledge about thermoelectric material. Guided by this, we carried out actual material synthesis that led to identification of a novel spin-driven thermoelectric material with the largest thermopower to date.
We present a supervised learning method to learn the propagator map of a dynamical system from partial and noisy observations. In our computationally cheap and easy-to-implement framework a neural network consisting of random feature maps is trained sequentially by incoming observations within a data assimilation procedure. By employing Takens embedding theorem, the network is trained on delay coordinates. We show that the combination of random feature maps and data assimilation, called RAFDA, outperforms standard random feature maps for which the dynamics is learned using batch data.
The effective charge of an element is a parameter characterizing the electromgration effect, which can determine the reliability of interconnection in electronic technologies. In this work, machine learning approaches were employed to model the effec tive charge (z*) as a linear function of physically meaningful elemental properties. Average 5-fold (leave-out-alloy-group) cross-validation yielded root-mean-square-error divided by whole data set standard deviation (RMSE/$sigma$) values of 0.37 $pm$ 0.01 (0.22 $pm$ 0.18), respectively, and $R^2$ values of 0.86. Extrapolation to z* of totally new alloys showed limited but potentially useful predictive ability. The model was used in predicting z* for technologically relevant host-impurity pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا