ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the d ust and consequently the SED. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-IR. We analyze a full set of data (including VLTI/Pionier, VLTI/Midi, and VLT/NaCo/Sam) to constrain the structure of the transition disk around TCha. We used the Mcfost radiative transfer code to simultaneously model the SED and the interferometric observations. We find that the dust responsible for the emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU). We find that the outer disk starts at about 12 AU and is partially resolved by the Pionier, Sam, and Midi instruments. We show that the Sam closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the outer disk. The presence of matter inside the gap is difficult to assess with present-day observations. Our model suggests the outer disk contaminates the interferometric signature of any potential companion that could be responsible for the gap opening, and such a companion still has to be unambiguously detected. We stress the difficulty to observe point sources in bright massive disks, and the consequent need to account for disk asymmetries (e.g. anisotropic scattering) in model-dependent search for companions.
Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-IR. Around solar-type stars, very few objects show emission features in mid-IR spectroscopic observations, that are attributed to small , warm silicate dust grains. The origin of this warm dust can possibly be explained either by a collision between several bodies or by transport from an outer belt. We present and analyse new far-IR Herschel/Pacs observations, supplemented by ground-based data in the mid-IR (VLTI/Midi and VLT/Visir), for one of these rare systems: the 10-16 Myr old debris disk around HD 113766 A. We improve an existing model to account for these new observations, and better constrain the spatial distribution of the dust and its composition. We underline the limitations of SED modelling and the need for spatially resolved observations. We find that the system is best described by an inner disk located within the first AU, well constrained by the Midi data, and an outer disk located between 9-13 AU. In the inner dust belt, our previous finding of Fe-rich crystalline olivine grains still holds. We do not observe time variability of the emission features over at least a 8 years time span, in a environment subjected to strong radiation pressure. The time stability of the emission features indicates that {mu}m-sized dust grains are constantly replenished from the same reservoir, with a possible depletion of sub-{mu}m-sized grains. We suggest that the emission features may arise from multi-composition aggregates. We discuss possible scenarios concerning the origin of the warm dust. The compactness of the innermost regions as probed by Midi, as well as the dust composition, suggest that we are witnessing the outcomes of (at least) one collision between partially differentiated bodies, in an environment possibly rendered unstable by terrestrial planetary formation.
As part of the Dust, Ice, and Gas In Time (DIGIT) Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350 and 500 micron) of 31 Weak-Line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of t heir circumstellar disks. Thirteen stars in our sample had circumstellar disks previously known from infrared observations at shorter wavelengths, while eighteen of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Seven of the 15 disks appear to be optically thick primordial disks, including two objects with SEDs indistinguishable from those of typical Classical T Tauri stars, four objects that have significant deficit of excess emission at all IR wavelengths, and one pre-transitional object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 micron Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 micron fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F70/F70,star > 5 - 15 and L,disk/L,star > 1xE-3 to 1xE-4 can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.
Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hy drogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation build-up in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: delta-ZrH1.6, gamma-ZrH, and epsilon-ZrH2.
(Abridged) Debris disks trace remnant reservoirs of leftover planetesimals in planetary systems. A handful of warm debris disks have been discovered in the last years, where emission in excess starts in the mid-infrared. An interesting subset within these warm debris disks are those where emission features are detected in mid-IR spectra, which points towards the presence of warm micron-sized dust grains. Given the ages of the host stars, the presence of these grains is puzzling, and questions their origin and survival in time. This study focuses on determining the mineralogy of the dust around 7 debris disks with evidence for warm dust, based on Spitzer/IRS spectroscopic data, in order to provide new insights into the origin of the dust grains. We present a new radiative transfer code dedicated to SED modeling of optically thin disks. We make use of this code on the SEDs of seven warm debris disks, in combination with recent laboratory experiments on dust optical properties. We find that most, if not all, debris disks in our sample are experiencing a transient phase, suggesting a production of small dust grains on relatively short timescales. From a mineralogical point of view, we find that enstatite grains have small abundances compared to crystalline olivine grains. The main result of our study is that we find evidences for Fe-rich crystalline olivine grains (Fe / [Mg + Fe] ~ 0.2) for several debris disks. This finding contrasts with studies of gas-rich protoplanetary disks. The presence of Fe-rich olivine grains, and the overall differences between the mineralogy of dust in Class II disks compared to debris disks suggest that the transient crystalline dust is of a new generation. We discuss possible crystallization routes to explain our results, and comment on the mechanisms that may be responsible for the production of small dust grains.
T Cha is a nearby (d = 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. (2011) recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 micron) of T Cha from the Dust, Ice, and Gas in Time (DIGIT) Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 micron without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond 40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Chas outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.
Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and Solar System bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites an d interplanetary dust particles indicates a modification of the almost completely amorphous ISM dust from which they formed. The production of crystalline silicates thus must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and Eta Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralogy evolution with time for a total sample of 139 disks. The mean cluster age and disk fraction are used as indicators of the evolutionary stage of the different populations. Our results show that the disks in the different regions have similar distributions of mean grain sizes and crystallinity fractions (~10-20%) despite the spread in mean ages. Furthermore, there is no evidence of preferential grain sizes for any given disk geometry, nor for the mean cluster crystallinity fraction to increase with mean age in the 1-8 Myr range. The main implication is that a modest level of crystallinity is established in the disk surface early on (< 1 Myr), reaching a equilibrium that is independent of what may be happening in the disk midplane. These results are discussed in the context of planet formation, in comparison with mineralogical results from small bodies in our Solar System. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا