ترغب بنشر مسار تعليمي؟ اضغط هنا

We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was perf ormed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.
In 2005 February we observed Cygnus X-1 over a period of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. We present the results of the spectral and timing analysis on a timescale of 90 min and show that the beh avior of Cyg X-1 is similar to that found during our years long monitoring campaign. As a highlight we present evidence for a full transition from the hard to the soft state that happened during less than three hours. The observation provided a more complete picture of a state transition than before, especially concerning the evolution of the time lags, due to unique transition coverage and analysis with high time resolution.
High-mass X-ray binary systems are powered by the stellar wind of their donor stars. The X-ray state of Cygnus X-1 is correlated with the properties of the wind which defines the environment of mass accretion. Chandra-HETGS observations close to orbi tal phase 0 allow for an analysis of the photoionzed stellar wind at high resolution, but because of the strong variability due to soft X-ray absorption dips, simultaneous multi-satellite observations are required to track and understand the continuum, too. Besides an earlier joint Chandra and RXTE observation, we present first results from a recent campaign which represents the best broad-band spectrum of Cyg X-1 ever achieved: On 2008 April 18/19 we observed this source with XMM-Newton, Chandra, Suzaku, RXTE, INTEGRAL, Swift, and AGILE in X- and gamma-rays, as well as with VLA in the radio. After superior conjunction of the black hole, we detect soft X-ray absorption dips likely due to clumps in the focused wind covering >95 % of the X-ray source, with column densities likely to be of several 10^23 cm^-2, which also affect photon energies above 20 keV via Compton scattering.
We investigate the spectral and temporal behavior of the high mass X-ray binary Vela X-1 during a phase of high activity, with special focus on the observed giant flares and off states. INTEGRAL observed Vela X-1 in a long almost uninterrupted observ ation for two weeks in 2003 Nov/Dec. The data were analyzed with OSA 7.0 and FTOOLS 6.2. We derive the pulse period, light curves, spectra, hardness ratios, and hardness intensity diagrams, and study the eclipse. In addition to an already high activity level, Vela X-1 exhibited several intense flares, the brightest ones reaching a maximum intensity of more than 5 Crab in the 20-40 keV band and several off states where the source was no longer detected by INTEGRAL. We determine the pulse period to be 283.5320+/-0.0002 s, which is stable throughout the entire observation. Analyzing the eclipses provided an improvement in the ephemeris. Spectral analysis of the flares indicates that there appear to be two types of flares: relatively brief flares, which can be extremely intense and show spectral softening, in contrast to high intensity states, which are longer and show no softening. Both flares and off states are interpreted as being due to a strongly structured wind of the optical companion. When Vela X-1 encounters a cavity with strongly reduced density, the flux will drop triggering the onset of the propeller effect, which inhibits further accretion, giving rise to off states. The sudden decrease in the density of the material required to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers about the densities in OB star winds. A similarly structured wind can produce giant flares when Vela X-1 encounters a dense blob in the wind.
478 - Joern Wilms 2007
We report on the first detection of a quasi-simultaneous radio-X-ray flare of Cygnus X-1. The detection was made on 2005 April 16 with pointed observations by the Rossi X-ray Timing Explorer and the Ryle telescope, during a phase where the black hole candidate was close to a transition from the its soft into its hard state. The radio flare lagged the X-rays by approximately 7 minutes, peaking at 3:20 hours barycentric time (TDB 2453476.63864). We discuss this lag in the context of models explaining such flaring events as the ejection of electron bubbles emitting synchrotron radiation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا