ترغب بنشر مسار تعليمي؟ اضغط هنا

Catching Up on State Transitions in Cygnus X-1

125   0   0.0 ( 0 )
 نشر من قبل Moritz Boeck
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2005 February we observed Cygnus X-1 over a period of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. We present the results of the spectral and timing analysis on a timescale of 90 min and show that the behavior of Cyg X-1 is similar to that found during our years long monitoring campaign. As a highlight we present evidence for a full transition from the hard to the soft state that happened during less than three hours. The observation provided a more complete picture of a state transition than before, especially concerning the evolution of the time lags, due to unique transition coverage and analysis with high time resolution.



قيم البحث

اقرأ أيضاً

The black-hole binary Cygnus X-1 was observed for 17 ks with the Suzaku X-ray observatory in 2005 October, while it was in a low/hard state with a 0.7-300 keV luminosity of 4.6 x 10^37 erg/s. The XIS and HXD spectra, spanning 0.7-400 keV, were reprod uced successfully incorporating a cool accretion disk and a hot Comptonizing corona. The corona is characterized by an electron temperature of ~100 keV, and two optical depths of ~0.4 and ~1.5 which account for the harder and softer continua, respectively. The disk has the innermost temperature of ~0.2 keV, and is thought to protrude half way into the corona. The disk not only provides seed photons to the Compton cloud, but also produces a soft spectral excess, a mild reflection hump, and a weakly broadened iron line. A comparison with the Suzaku data on GRO J1655-40 reveals several interesting spectral differences, which can mostly be attributed to inclination effects assuming that the disk has a flat geometry while the corona is grossly spherical. An intensity-sorted spectroscopy indicates that the continuum becomes less Comptonized when the source flares up on times scales of 1-200 s, while the underlying disk remains unchanged.
540 - W. Cui 1996
We reported previously that for Cyg X-1 there is a settling period following the transition from hard to soft state (astro-ph/9610071). During the transiton, The low energy spectrum (below ~10 keV) varies significantly from observation to observation while the high energy portion changes little. The source reaches nominal soft-state brightness during the settling period. It can be characterized by a soft low-energy spectrum and significant low-frequency 1/f noise and white noise on the power density spectrum (PDS). The low-energy spectrum becomes even softer, and the PDS is completely dominated by the 1/f noise, when the ``true soft state is reached. In this paper, subsequent RXTE observations of Cyg X-1 in the soft state are examined, and the results confirm our earlier conclusions. Furthermore, we show the results from observations taken during a soft-to-hard transition. As expected, the white noise appears again, and accordingly, the 1/f noise becomes less dominant, similar to the settling period at the end of the hard-to-soft transition. The low-frequency 1/f noise has not been observed when Cyg X-1 is in the hard state. Therefore, it seems to be positively correlated with the disk mass accretion rate which is low in the hard state and high in the soft state. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a simple ``fluctuating corona model (astro-ph/9610071). Here we present more evidence for it.
294 - Wei Cui 1997
We report the results from our timing analysis of 15 RXTE observations of Cygnus X-1 throughout its 1996 spectral transitions. The entire period can be divided into 3 distinct phases: (1) transition from the hard to soft state, (2) soft state, and (3 ) transition from the soft state back to the hard state. The observed X-ray properties in phases 1 and 3 are remarkably similar, suggesting that the same physical processes are likely involved in triggering such transitions. The power density spectrum (PDS) during the transition can be characterized by a red noise component, followed by a white noise component which extends to roughly 1-3 Hz where it is cut off, and a steeper power law at higher frequencies. The X-ray flux also exhibits apparent quasi-periodic oscillation (QPO) with the centroid frequency varying in the range of 4-12 Hz. The QPO shows no correlation with the source flux, but becomes more prominent at higher energies. This type of PDS bears resemblance to that of other black hole candidates often observed in a so-called very high state, although the origin of the observed QPO may be very different. The low-frequency red noise has not been observed in the hard state, thus seems to be positively correlated with the disk mass accretion rate which is presumably low in the hard state and high in the soft state; in fact, it completely dominates the PDS in the soft state. In the framework of thermalComptonization models, Cui et al. (see astro-ph/9610071 and astro-ph/9610072) speculated that the difference in the observed spectral and timing properties between the hard and soft states is due to the presence of a ``fluctuating Comptonizing corona during the transition. Here we present the measured hard X-ray time lags and coherence functions between various energy bands, and show that the results strongly support such a scenario.
91 - W. Cui 1996
We present the results from the RXTE observations of Cygnus X-1 in its high state. In the energy range of 2-200 keV, the observed X-ray spectrum can be described by a model consisting of a soft blackbody component and a broken power-law with a high e nergy cutoff. The low energy spectrum (below about 11 keV) varies significantly from observation to observation while the high energy portion changes little. The X-ray flux varies on all timescales down to milliseconds. The power density spectrum (PDS) can be characterized by excess red noise (``1/f) at low frequencies and a white noise component that extends to 1-3 Hz before being cut off. At higher frequencies, the PDS becomes power-law again, with a slope of roughly -2 (i.e., ``1/f^2). Broad peaks in the range of 3-9 Hz are present, and might be due to quasi-periodic oscillations. The PDS shows interesting spectral dependence: the 1/f component becomes more prominent when the low-energy spectrum becomes softer. The difference in the observed spectral and timing properties between the low and high states is qualitatively consistent with a simple ``fluctuating corona model.
We report the results of an observation of Cygnus X-1 with INTEGRAL, that we combine with simultaneous radio observations with the Ryle telescope. Both spectral and variability properties of the source indicate that Cygnus X-1 was in an Intermediate State. The INTEGRAL spectrum shows a high-energy cut-off or break around 100 keV. The shape of this cut-off differs from pure thermal Comptonisation, suggesting the presence of a non-thermal component at higher energies.The average broad band spectrum is well represented by hybrid thermal/non-thermal Comptonisation models. During the 4 day long observation the source showed an important spectral and flux variability. A principal component analysis demonstrates that most of this variability occurs through 2 independent modes. The first mode consists in changes in the overall luminosity on time scale of hours with almost constant spectra that are strikingly uncorrelated with the variable radio flux. We interpret this variability mode as variations of the dissipation rate in the corona. The second variability mode consists in a pivoting of the spectrum around 10 keV. It acts on a longer time-scale: initially soft, the spectrum hardens in the first part of the observation and then softens again. This pivoting pattern is strongly correlated with the radio (15 GHz) emission: radio fluxes are stronger when the INTEGRAL spectrum is harder. We propose that the pivoting mode represents a mini state transition from a nearly High Soft State to a nearly Low Hard State, and back. This mini-transition would be caused by changes in the soft cooling photons flux in the hot Comptonising plasma associated with an increase of the temperature of the accretion disc. The jet power then appears to be anti-correlated with the disc luminosity and unrelated to the coronal power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا