ترغب بنشر مسار تعليمي؟ اضغط هنا

A p-n junction, an interface between two regions of a material populated with carriers of opposite charge, is a basic building block of solid state electronic devices. From the fundamental physics perspective, it often serves as a tool to reveal the unconventional transport behavior of novel materials. In this work, we show that a p-n junction made from a three dimensional topological insulator (3DTI) in a magnetic field realizes an electronic Mach-Zehnder interferometer with virtually perfect visibility. This is owed to the confinement of the topological Dirac fermion state to a closed two-dimensional surface, which offers the unprecedented possibility of utilizing external fields to design networks of chiral modes wrapping around the bulk in closed trajectories, without the need of complex constrictions or etching. Remarkably, this junction also acts as a spin filter, where the path of the particle is tied to the direction of spin propagation. It therefore constitutes a novel and highly tunable spintronic device where spin polarized input and output currents are naturally formed and could be accessed and manipulated seperately.
62 - Sunghun Park , Joel E. Moore , 2013
Majorana fermions in a superconductor hybrid system are charge neutral zero-energy states. For the detection of this unique feature, we propose an interferometry of a chiral Majorana edge channel, formed along the interface between a superconductor a nd a topological insulator under an external magnetic field. The superconductor is of a ring shape and has a Josephson junction that allows the Majorana state to enclose continuously tunable magnetic flux. Zero-bias differential electron conductance between the Majorana state and a normal lead is found to be independent of the flux at zero temperature, manifesting the Majorana feature of a charge neutral zero-energy state. In contrast, the same setup on graphene has no Majorana state and shows Aharonov-Bohm effects.
We study thermoelectric transport at low temperatures in correlated Kondo insulators, motivated by the recent observation of a high thermoelectric figure of merit(ZT) in $FeSb_2$ at $T sim 10 K$. Even at room temperature, correlations have the potent ial to lead to high ZT, as in $YbAl_3$, one of the most widely used thermoelectric metals. At low temperature correlation effects are especially worthy of study because fixed band structures are unlikely to give rise to the very small energy gaps $E_g sim 5 kT$ necessary for a weakly correlated material to function efficiently at low temperature. We explore the possibility of improving the thermoelectric properties of correlated Kondo insulators through tuning of crystal field and spin-orbit coupling and present a framework to design more efficient low-temperature thermoelectrics based on our results.
Topological insulators have an insulating bulk but a metallic surface. In the simplest case, the surface electronic structure of a 3D topological insulator is described by a single 2D Dirac cone. A single 2D Dirac fermion cannot be realized in an iso lated 2D system with time-reversal symmetry, but rather owes its existence to the topological properties of the 3D bulk wavefunctions. The transport properties of such a surface state are of considerable current interest; they have some similarities with graphene, which also realizes Dirac fermions, but have several unique features in their response to magnetic fields. In this review we give an overview of some of the main quantum transport properties of topological insulator surfaces. We focus on the efforts to use quantum interference phenomena, such as weak anti-localization and the Aharonov-Bohm effect, to verify in a transport experiment the Dirac nature of the surface state and its defining properties. In addition to explaining the basic ideas and predictions of the theory, we provide a survey of recent experimental work.
Several small-bandgap semiconductors are now known to have protected metallic surface states as a consequence of the topology of the bulk electron wavefunctions. The known topological insulators with this behavior include the important thermoelectric materials Bi_2Te_3 and Bi_2Se_3, whose surfaces are observed in photoemission experiments to have an unusual electronic structure with a single Dirac cone. We study in-plane (i.e., horizontal) transport in thin films made of these materials. The surface states from top and bottom surfaces hybridize, and conventional diffusive transport predicts that the tunable hybridization-induced band gap leads to increased thermoelectric performance at low temperatures. Beyond simple diffusive transport, the conductivity shows a crossover from the spin-orbit induced anti-localization at a single surface to ordinary localization.
We investigate the spin/charge transport in a one-dimensional strongly correlated system by using the adaptive time-dependent density-matrix renormalization group method. The model we consider is a non-half-filled Hubbard chain with a bond of control lable spin-dependent electron hoppings, which is found to cause a blockade of spin current with little influence on charge current. We have considered (1) the spread of a wave packet of both spin and charge in the Hubbard chain and (2) the spin and charge currents induced by a spin-dependent voltage bias that is applied to the ideal leads attached at the ends of this Hubbard chain. It is found that the spin-charge separation plays a crucial role in the spin-current blockade, and one may utilize this phenomenon to observe the spin-charge separation directly.
The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in an optical trap. We study the general ground state phase diagram of a spin-1 system and focus on a phase that has a magnetic Ising order parameter and numerically determine the nature of the finite temperature superfluid and magnetic phase transitions. We then study three different dynamical models: model A, which has no conserved quantities, model F, which has a conserved second sound mode and the Gross-Pitaevskii (GP) equation which has a conserved density and magnetization. We find the dynamic critical exponent to be the same for models A and F ($z=2$) but different for GP ($z approx 3$). Externally imposed magnetization conservation in models A and F yields the value $z approx 3$, which demonstrates that the only conserved density relevant to domain formation is the magnetization density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا