ترغب بنشر مسار تعليمي؟ اضغط هنا

Attosecond angular streaking measurements have revealed deep insights into the timing of tunnel ionization processes of atoms in intense laser fields. So far experiments of this type have been performed only with a cold-target recoil-ion momentum spe ctrometer (COLTRIMS). Here, we present a way to apply attosecond angular streaking experiments to a velocity map imaging spectrometer (VMIS) with few-cycle pulses at a repetition rate of 10 kHz and a high ionization yield per pulse. Three-dimensional photoelectron momentum distributions from strong-field ionization of helium with an elliptically polarized, sub-10-fs pulse were retrieved by tomographic reconstruction from the momentum space electron images and used for the analysis in the polarization plane.
We compare the main competing theories of tunneling time against experimental measurements using the attoclock in strong laser field ionization of helium atoms. Refined attoclock measurements reveal a real and not instantaneous tunneling delay time o ver a large intensity regime, using two different experimental apparatus. Only two of the theoretical predictions are compatible within our experimental error: the Larmor time, and the probability distribution of tunneling times constructed using a Feynman Path Integral (FPI) formulation. The latter better matches the observed qualitative change in tunneling time over a wide intensity range, and predicts a broad tunneling time distribution with a long tail. The implication of such a probability distribution of tunneling times, as opposed to a distinct tunneling time, challenges how valence electron dynamics are currently reconstructed in attosecond science. It means that one must account for a significant uncertainty as to when the hole dynamics begin to evolve.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا