ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling Time in Ultrafast Science is Real and Probabilistic

57   0   0.0 ( 0 )
 نشر من قبل Alexandra Landsman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the main competing theories of tunneling time against experimental measurements using the attoclock in strong laser field ionization of helium atoms. Refined attoclock measurements reveal a real and not instantaneous tunneling delay time over a large intensity regime, using two different experimental apparatus. Only two of the theoretical predictions are compatible within our experimental error: the Larmor time, and the probability distribution of tunneling times constructed using a Feynman Path Integral (FPI) formulation. The latter better matches the observed qualitative change in tunneling time over a wide intensity range, and predicts a broad tunneling time distribution with a long tail. The implication of such a probability distribution of tunneling times, as opposed to a distinct tunneling time, challenges how valence electron dynamics are currently reconstructed in attosecond science. It means that one must account for a significant uncertainty as to when the hole dynamics begin to evolve.

قيم البحث

اقرأ أيضاً

Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportun ities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.
We study tunneling processes of Bose-Einstein condensate (BEC) on the real time stochastic approach and reveal some properties of their tunneling time. An important result is that the tunneling time decreases as the repulsive interatomic interaction becomes stronger. Furthermore, the tunneling time in a strong interaction region is not much affected by the potential height and is represented by an almost constant function. We also obtain the other related times such as the hesitating and interaction ones and investigate their dependence on the interaction strength. Finally, we calculate the mean arrival time of BEC wave packet and show the large displacement of its peak position.
We demonstrate single qubit operations on a trapped atom hyperfine qubit using a single ultrafast pulse from a mode-locked laser. We shape the pulse from the laser and perform a pi rotation of the qubit in less than 50 ps with a population transfer e xceeding 99% and negligible effects from spontaneous emission or ac Stark shifts. The gate time is significantly shorter than the period of atomic motion in the trap (Rabi frequency / trap frequency > 10000), demonstrating that this interaction takes place deep within the strong excitation regime.
89 - S. Eckart , D. Trabert , J. Rist 2021
Molecules are many body systems with a substantial amount of entanglement between their electrons. Is there a way to break the molecular bond of a diatomic molecule and obtain two atoms in their ground state which are still entangled and form a Bell- like state? We present a scheme that allows for the preparation of such entangled atomic states from single oxygen molecules on femtosecond time scales. The two neutral oxygen atoms are entangled in the magnetic quantum number of their valence electrons. In a time-delayed probe step, we employ non-adiabatic tunnel ionization, which is a magnetic quantum number-sensitive mechanism. We then investigate correlations by comparing single and double ionization probabilities of the Bell-like state. The experimental results agree with the predictions for an entangled state.
The tunneling ionization of an electron from a p-state in a highly charged ion in the relativistic regime is investigated in a linearly polarized strong laser field. In contrast to the case of an s-state, the tunneling ionization from the p-state is spin asymmetric. We have singled out two reasons for the spin asymmetry: first, the difference of the electron energy Zeeman splitting in the bound state and during tunneling, and second, the relativistic momentum shift along the laser propagation direction during the under-the barrier motion. Due to the latter, those states are predominantly ionized where the electron rotation is opposite to the electron relativistic shift during the under-the-barrier motion. We have investigated the dependence of the ionization rate on the laser intensity for different projections of the total angular momentum and identified the intensity parameter which governs this behaviour. The significant change of the ionization rate is originated from the different precession dynamics of the total angular momentum in the bound state at high and low intensities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا