ترغب بنشر مسار تعليمي؟ اضغط هنا

Communication technologies like voice over IP operate under constrained real-time conditions, with voice packets being subject to delays and losses from the network. In such cases, the packet loss concealment (PLC) algorithm reconstructs missing fram es until a new real packet is received. Recently, autoregressive deep neural networks have been shown to surpass the quality of signal processing methods for PLC, specially for long-term predictions beyond 60 ms. In this work, we propose a non-autoregressive adversarial auto-encoder, named PLAAE, to perform real-time PLC in the waveform domain. PLAAE has a causal convolutional structure, and it learns in an auto-encoder fashion to reconstruct signals with gaps, with the help of an adversarial loss. During inference, it is able to predict smooth and coherent continuations of such gaps in a single feed-forward step, as opposed to autoregressive models. Our evaluation highlights the superiority of PLAAE over two classic PLCs and two deep autoregressive models in terms of spectral and intonation reconstruction, perceptual quality, and intelligibility.
Score-based generative models provide state-of-the-art quality for image and audio synthesis. Sampling from these models is performed iteratively, typically employing a discretized series of noise levels and a predefined scheme. In this note, we firs t overview three common sampling schemes for models trained with denoising score matching. Next, we focus on one of them, consistent annealed sampling, and study its hyper-parameter boundaries. We then highlight a possible formulation of such hyper-parameter that explicitly considers those boundaries and facilitates tuning when using few or a variable number of steps. Finally, we highlight some connections of the formulation with other sampling schemes.
Automatic speech quality assessment is an important, transversal task whose progress is hampered by the scarcity of human annotations, poor generalization to unseen recording conditions, and a lack of flexibility of existing approaches. In this work, we tackle these problems with a semi-supervised learning approach, combining available annotations with programmatically generated data, and using 3 different optimization criteria together with 5 complementary auxiliary tasks. Our results show that such a semi-supervised approach can cut the error of existing methods by more than 36%, while providing additional benefits in terms of reusable features or auxiliary outputs. Improvement is further corroborated with an out-of-sample test showing promising generalization capabilities.
End-to-end models for raw audio generation are a challenge, specially if they have to work with non-parallel data, which is a desirable setup in many situations. Voice conversion, in which a model has to impersonate a speaker in a recording, is one o f those situations. In this paper, we propose Blow, a single-scale normalizing flow using hypernetwork conditioning to perform many-to-many voice conversion between raw audio. Blow is trained end-to-end, with non-parallel data, on a frame-by-frame basis using a single speaker identifier. We show that Blow compares favorably to existing flow-based architectures and other competitive baselines, obtaining equal or better performance in both objective and subjective evaluations. We further assess the impact of its main components with an ablation study, and quantify a number of properties such as the necessary amount of training data or the preference for source or target speakers.
The speech enhancement task usually consists of removing additive noise or reverberation that partially mask spoken utterances, affecting their intelligibility. However, little attention is drawn to other, perhaps more aggressive signal distortions l ike clipping, chunk elimination, or frequency-band removal. Such distortions can have a large impact not only on intelligibility, but also on naturalness or even speaker identity, and require of careful signal reconstruction. In this work, we give full consideration to this generalized speech enhancement task, and show it can be tackled with a time-domain generative adversarial network (GAN). In particular, we extend a previous GAN-based speech enhancement system to deal with mixtures of four types of aggressive distortions. Firstly, we propose the addition of an adversarial acoustic regression loss that promotes a richer feature extraction at the discriminator. Secondly, we also make use of a two-step adversarial training schedule, acting as a warm up-and-fine-tune sequence. Both objective and subjective evaluations show that these two additions bring improved speech reconstructions that better match the original speaker identity and naturalness.
Learning good representations without supervision is still an open issue in machine learning, and is particularly challenging for speech signals, which are often characterized by long sequences with a complex hierarchical structure. Some recent works , however, have shown that it is possible to derive useful speech representations by employing a self-supervised encoder-discriminator approach. This paper proposes an improved self-supervised method, where a single neural encoder is followed by multiple workers that jointly solve different self-supervised tasks. The needed consensus across different tasks naturally imposes meaningful constraints to the encoder, contributing to discover general representations and to minimize the risk of learning superficial ones. Experiments show that the proposed approach can learn transferable, robust, and problem-agnostic features that carry on relevant information from the speech signal, such as speaker identity, phonemes, and even higher-level features such as emotional cues. In addition, a number of design choices make the encoder easily exportable, facilitating its direct usage or adaptation to different problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا