ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - Jin-Hua Zhao , Hai-Jun Zhou , 2013
Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolati ng cluster. Here we study this inducing effect on the classical site percolation and K-core percolation, showing that the inducing effect always causes a discontinuous percolation transition. We precisely predict the percolation threshold and core size for uncorrelated random networks with arbitrary degree distributions. For low-dimensional lattices the percolation threshold fluctuates considerably over realizations, yet we can still predict the core size once the percolation occurs. The core sizes of real-world networks can also be well predicted using degree distribution as the only input. Our work therefore provides a theoretical framework for quantitatively understanding discontinuous breakdown phenomena in various complex systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا