ترغب بنشر مسار تعليمي؟ اضغط هنا

An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect in a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below 50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.
66 - Shu-Zheng Yang , Kai Lin , Jin Li 2014
Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black strings is researched under this correctional Dirac field theory. We also use semi-classical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black holes entropy are derived.
Weakly Interacting Massive Particles (WIMPs) are the candidates of dark matter in our universe. Up to now any direct interaction of WIMP with nuclei has not been observed yet. The exclusion limits of the spin-independent cross section of WIMP-nucleon which have been experimentally obtained is about 10^{-7}pb at high mass region and only 10^{-5}pb} at low mass region. China Jin-Ping underground laboratory CJPL is the deepest underground lab in the world and provides a very promising environment for direct observation of dark matter. The China Dark Matter Experiment (CDEX) experiment is going to directly detect the WIMP flux with high sensitivity in the low mass region. Both CJPL and CDEX have achieved a remarkable progress in recent two years. The CDEX employs a point-contact germanium semi-conductor detector PCGe whose detection threshold is less than 300 eV. We report the measurement results of Muon flux, monitoring of radioactivity and Radon concentration carried out in CJPL, as well describe the structure and performance of the 1 kg PCGe detector CDEX-1 and 10kg detector array CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of the CDEX-1, CDEX-10 and the future CDEX-1T detectors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا