ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent studies suggest that only three of the twelve brightest satellites of the Milky Way (MW) inhabit dark matter halos with maximum circular velocity, V_max, exceeding 30km/s. This is in apparent contradiction with the LCDM simulations of the Aqua rius Project, which suggest that MW-sized halos should have at least 8 subhalos with V_max>30km/s. The absence of luminous satellites in such massive subhalos is thus puzzling and may present a challenge to the LCDM paradigm. We note, however, that the number of massive subhalos depends sensitively on the (poorly-known) virial mass of the Milky Way, and that their scarcity makes estimates of their abundance from a small simulation set like Aquarius uncertain. We use the Millennium Simulation series and the invariance of the scaled subhalo velocity function (i.e., the number of subhalos as a function of u, the ratio of subhalo V_max to host halo virial velocity, V_200) to secure improved estimates of the abundance of rare massive subsystems. In the range 0.1< u<0.5, N_sub(> u) is approximately Poisson-distributed about an average given by <N_sub>=10.2x( u/0.15)^(-3.11). This is slightly lower than in Aquarius halos, but consistent with recent results from the Phoenix Project. The probability that a LCDM halo has 3 or fewer subhalos with V_max above some threshold value, V_th, is then straightforward to compute. It decreases steeply both with decreasing V_th and with increasing halo mass. For V_th=30km/s, ~40% of M_halo=10^12 M_sun halos pass the test; fewer than 5% do so for M_halo>= 2x10^12 M_sun; and the probability effectively vanishes for M_halo>= 3x 10^12 M_sun. Rather than a failure of LCDM, the absence of massive subhalos might simply indicate that the Milky Way is less massive than is commonly thought.
149 - Jin-Long Xu , Jun-Jie Wang , 2011
We present Submillimeter Array observations of the massive star-forming region IRAS 20126+4104 in the millimeter continuum and in several molecular line transitions. With the SMA data, we have detected nine molecular transitions, including DCN, CH3OH , H2CO, and HC3N molecules, and imaged each molecular line. From the 1.3 mm continuum emission a compact millimeter source is revealed, which is also associated with H2O, OH, and CH3OH masers. Using a rotation temperature diagram (RTD), we derive that the rotational temperature and the column density of CH3OH are 200 K and 3.7times 1017 cm-2, respectively. The calculated results and analysis further indicate that a hot core coincides with IRAS 20126+4104. The position-velocity diagrams of H2CO 3(0,3)-2(0,2) and HC3N 25-24 clearly present Keplerian rotation. Moreover, H2CO 3(0,3)-2(0,2) is found to trace the disk rotation for the first time.
292 - Volker Springel 2008
We have performed the largest ever particle simulation of a Milky Way-sized dark matter halo, and present the most comprehensive convergence study for an individual dark matter halo carried out thus far. We have also simulated a sample of 6 ultra-hig hly resolved Milky-way sized halos, allowing us to estimate the halo-to-halo scatter in substructure statistics. In our largest simulation, we resolve nearly 300,000 gravitationally bound subhalos within the virialized region of the halo. Simulations of the same object differing in mass resolution by factors up to 1800 accurately reproduce the largest subhalos with the same mass, maximum circular velocity and position, and yield good convergence for the abundance and internal properties of dark matter substructures. We detect up to four generations of subhalos within subhalos, but contrary to recent claims, we find less substructure in subhalos than in the main halo when regions of equal mean overdensity are compared. The overall substructure mass fraction is much lower in subhalos than in the main halo. Extrapolating the main halos subhalo mass spectrum down to an Earth mass, we predict the mass fraction in substructure to be well below 3% within 100 kpc, and to be below 0.1% within the Solar Circle. The inner density profiles of subhalos show no sign of converging to a fixed asymptotic slope and are well fit by gently curving profiles of Einasto form. The mean concentrations of isolated halos are accurately described by the fitting formula of Neto et al. down to maximum circular velocities of 1.5 km/s, an extrapolation over some 5 orders of magnitude in mass. However, at equal maximum circular velocity, subhalos are more concentrated than field halos, with a characteristic density that is typically ~2.6 times larger and increases towards the halo centre.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا