ترغب بنشر مسار تعليمي؟ اضغط هنا

164 - Jiao Wang , Chushun Tian , 2014
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra mework of an atom optics realization. However, the absence of genuine randomness in the QKR reflects in critical phenomena beyond those of the Anderson universality class. Specifically, the system shows strong sensitivity to the algebraic properties of its effective Planck constant $tilde h equiv 4pi /q$. For integer $q$, the system may be in a globally integrable state, in a `super-metallic configuration characterized by diverging response coefficients, Anderson localized, metallic, or exhibit transitions between these phases. We present numerical data for different $q$-values and effective dimensionalities, with the focus being on parameter configurations which may be accessible to experimental investigations.
Controlling the translational motion of cold atoms using optical lattice potentials is of both theoretical and experimental interest. By designing two on-resonance time sequences of kicking optical lattice potentials, a novel connection between two p aradigms of nonlinear mapping systems, i.e., the kicked rotor model and the kicked Harper model, is established. In particular, it is shown that Hofstadters butterfly quasi-energy spectrum in periodically driven quantum systems may soon be realized experimentally, with the effective Planck constant tunable by varying the time delay between two sequences of control fields. Extensions of this study are also discussed. The results are intended to open up a new generation of cold-atom experiments of quantum nonlinear dynamics
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا