ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent reflecting surfaces (IRSs) improve both the bandwidth and energy efficiency of wideband communication systems by using low-cost passive elements for reflecting the impinging signals with adjustable phase shifts. To realize the full potent ial of IRS-aided systems, having accurate channel state information (CSI) is indispensable, but it is challenging to acquire, since these passive devices cannot carry out transmit/receive signal processing. The existing channel estimation methods conceived for wideband IRS-aided communication systems only consider the channels frequency selectivity, but ignore the effect of beam squint, despite its severe performance degradation. Hence we fill this gap and conceive wideband channel estimation for IRS-aided communication systems by explicitly taking the effect of beam squint into consideration. We demonstrate that the mutual correlation function between the spatial steering vectors and the cascaded two-hop channel reflected by the IRS has two peaks, which leads to a pair of estimated angles for a single propagation path, due to the effect of beam squint. One of these two estimated angles is the frequency-independent `actual angle, while the other one is the frequency-dependent `false angle. To reduce the influence of false angles on channel estimation, we propose a twin-stage orthogonal matching pursuit (TS-OMP) algorithm.
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channels characteristics and degrades the systems performance. In order to solve this problem, w e propose a cross-entropy inspired antenna array diagnosis detection (CE-AAD) technique by exploiting the correlations of adjacent antennas, when blockages occur at the transmitter. Then, we extend the proposed CE-AAD algorithm to the case, where blockages occur at transmitter and receiver simultaneously. Our simulation results show that the proposed CE-AAD algorithm outperforms its traditional counterparts.
By observing the fact that moving in a straight line is a common flying behavior of unmanned aerial vehicles (UAVs) in normal applications, e.g., power line inspections, and air patrols along with highway/streets/borders, in this paper we investigate the secrecy outage performance of a UAV system with linear trajectory, where a UAV ($S$) flies in a straight line and transmits its information over the downlink to a legitimate receiver ($D$) on the ground while an eavesdropping UAV ($E$) trying to overhear the information delivery between $S$ and $D$. Meanwhile, some information is delivered to $S$ over the uplink from $D$, such as commanding messages to control $S$s detecting operations, which can also be eavesdropped by $E$. The locations of $S$, $D$, and $E$ are randomly distributed. We first characterize the statistical characteristics (including cumulative distribution functions and probability density function) of the received signal-to-noise ratio over both downlink and uplink, and then the closed-form analytical expressions for the lower boundary of the secrecy outage probability of both downlink and uplink have also been derived accordingly. Finally, Monte-Carlo simulations are given to testify our proposed analytical models.
362 - Gaofeng Pan , Jia Ye , Jianping An 2020
Full-duplex (FD) transmission has already been regarded and developed as a promising method to improve the utilization efficiency of the limited spectrum resource, as transmitting and receiving are allowed to simultaneously occur on the same frequenc y band. Nowadays, benefiting from the recent development of intelligent reflecting surface (IRS), some unique electromagnetic (EM) functionalities, like wavefront shaping, focusing, anomalous reflection, absorption, frequency shifting, and nonreciprocity can be realized by soft-controlled elements at the IRS, showing the capability of reconfiguring the wireless propagation environment with no hardware cost and nearly zero energy consumption. To jointly exploit the virtues of both FD transmission and IRS, in this article we first introduce several EM functionalities of IRS that are profitable for FD transmission; then, some designs of FD-enabled IRS systems are proposed and discussed, followed by numerical results to demonstrate the obtained benefits. Finally, the challenges and open problems of realizing FD-enabled IRS systems are outlined and elaborated upon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا