ترغب بنشر مسار تعليمي؟ اضغط هنا

We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent g oing from real to complex as the coupling constant is increased. This change of behavior is manifested in the antisymmetric response, which displays power law behavior at small wavevectors reminiscent of a critical state, and a change in this power law from real to complex that is accompanied by poles in the response function for finite size systems, suggesting a phase transition for strong enough interactions. The density-density response is also calculated, for which no critical behavior is found. We demonstrate that exciton correlations enhance the cusp in the irreducible polarizability at $2k_F$, leading to a strong increase in the amplitude of Friedel oscillations around a charged impurity.
We investigate integer and half-integer filling states (uniform and unidimensional stripe states respectively) for graphene using the Hartree-Fock approximation. For fixed filling factor, the ratio between the scales of the Coulomb interaction and La ndau level spacing $g=(e^2/epsilon ell)/(hbar v_F/ell)$, with $ell$ the magnetic length, is a field-independent constant. However, when $B$ decreases, the number of filled negative Landau levels increases, which surprisingly turns out to decrease the amount of Landau level mixing. The resulting states at fixed filling factor $ u$ (for $ u$ not too big) have very little Landau level mixing even at arbitrarily weak magnetic fields. Thus in the density-field phase diagram, many different phases may persist down to the origin, in contrast to the more standard two dimensional electron gas, in which the origin is surrounded by Wigner crystal states. We demonstrate that the stripe amplitudes scale roughly as $B$, so that the density waves ``evaporate continuously as $Bto 0$. Tight-binding calculations give the same scaling for stripe amplitude and demonstrate that the effect is not an artifact of the cutoff procedure used in the continuum calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا