ترغب بنشر مسار تعليمي؟ اضغط هنا

High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration.
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.
Rather than point estimators, states of a quantum system that represent ones best guess for the given data, we consider optimal regions of estimators. As the natural counterpart of the popular maximum-likelihood point estimator, we introduce the maxi mum-likelihood region---the region of largest likelihood among all regions of the same size. Here, the size of a region is its prior probability. Another concept is the smallest credible region---the smallest region with pre-chosen posterior probability. For both optimization problems, the optimal region has constant likelihood on its boundary. We discuss criteria for assigning prior probabilities to regions, and illustrate the concepts and methods with several examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا