ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the effect of topological defects on the transport properties of a narrow ballistic ribbon of graphene with zigzag edges. Our results show that the longitudinal conductance vanishes at several discrete Fermi energies where the system d evelops loop orbital electric currents with certain chirality. The chirality depends on the direction of the applied bias voltage and the sign of the local curvature created by the topological defects. This novel quantum blockade phenomenon provides a new way to generate a magnetic moment by an external electric field, which can prove useful in carbon electronics.
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of be havior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of $sigma(E_F)$ and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao emph{et al.} (to appear in Science).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا