ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to addre ss this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in linear dimension, with an enhancement factor of ~6000 in peak fluence. This technology has the potential to provide highly confined strong optical focus deep in tissue for microsurgery of Parkinsons disease and epilepsy or single-neuron imaging and optogenetic activation.
Focusing light into opaque random or scattering media such as biological tissue is a much sought-after goal for biomedical applications such as photodynamic therapy, optical manipulation, and photostimulation. However, focusing with conventional lens es is restricted to one transport mean free path in scattering media, limiting both optical penetration depth and resolution. Focusing deeper is possible by using optical phase conjugation or wavefront shaping to compensate for the scattering. For practical applications, wavefront shaping offers the advantage of a robust optical system that is less sensitive to optical misalignment. Here, the phase of the incident light is spatially tailored using a phase-shifting array to pre-compensate for scattering. The challenge, then, is to determine the phase pattern which allows light to be optimally delivered to the target region. Optimization algorithms are typically employed for this purpose, with visible particles used as targets to generate feedback. However, using these particles is invasive, and light delivery is limited to fixed points. Here, we demonstrate a method for non-invasive and dynamic focusing, by using ultrasound encoding as a virtual guide star for feedback to an optimization algorithm. The light intensity at the acoustic focus was increased by an order of magnitude. This technique has broad biomedical applications, such as in optogenetics or photoactivation of drugs.
We extend the Collins-Soper-Sterman (CSS) formalism to apply it to the spin-dependence governed by the Sivers function. We use it to give a correct numerical QCD evolution of existing fixed-scale fits of the Sivers function. With the aid of approxima tions useful for the non-perturbative region, we present the results as parametrizations of a Gaussian form in transverse momentum space, rather than in the Fourier conjugate transverse coordinate space normally used in the CSS formalism. They are specifically valid at small transverse momentum. Since evolution has been applied, our results can be used to make predictions for Drell-Yan and semi-inclusive deep inelastic scattering at energies different from those where the original fits were made. Our evolved functions are of a form that they can be used in the same parton model factorization formulas as used in the original fits, but now with a predicted scale dependence in the fit parameters. We also present a method by which our evolved functions can be corrected to allow for twist-3 contributions at large parton transverse momentum.
Multi-photon interference reveals strictly non-classical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes f rom multi-photon state manipulation. We review the progress, both theoretical and experimental, of this rapidly advancing research. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification and quantum repeater), and quantum computation with linear optics. We shall limit the scope of our review to few photon phenomena involving measurements of discrete observables.
The effect of thermal fluctuations in Josephson junctions is usually analysed using the Ambegaokar-Halperin (AH) theory in the context of thermal activation. Enhanced fluctuations, demonstrated by broadening of current-voltage characteristics, have p reviously been found for proximity Josephson junctions. Here we report measurements of micron-scale normal metal loops contacted with thin superconducting electrodes, where the unconventional loop geometry enables tuning of the junction barrier with applied flux; for some geometries, the barrier can be effectively eliminated. Stronger fluctuations are observed when the flux threading the normal metal loop is near an odd half-integer flux quantum, and for devices with thinner superconducting electrodes. These findings suggest that the activation barrier, which is the Josephson coupling energy of the proximity junction, is different from that of conventional Josephson junctions. Simple one dimensional quasiclassical theory can predict the interference effect due to the loop structure, but the exact magnitude of the coupling energy cannot be computed without taking into account the details of the sample dimensions. In this way, the physics of this system is similar to the phase slipping process in thin superconducting wires. Besides shedding light on thermal fluctuations in proximity junctions, the findings here also demonstrate a new type of superconducting interference device with two normal branches sharing the same SN interface on both sides of the device, which has technical advantages for making symmetrical interference devices.
We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The laser system exhibits very low phase noise. The spectrum of the beat signal between two laser s, over millisecond timescales, is either Fourier limited or limited by the -111dBc/Hz noise floor. The resulting laser is well suited to quantum optics and sensing applications involving rare earth ion dopants.
We describe theoretical and experimental demonstration for optical detection of ultrasound using a spectral hole engraved in cryogenically cooled rare-earth ion doped solids. Our method utilizes the dispersion effects due to the spectral hole to perf orm phase to amplitude modulation conversion. Like previous approaches using spectral holes it has the advantage of detection with large etendue. The method also has the benefit that high sensitivity can be obtained with moderate absorption contrast for the spectral holes.
We report experiments on micron-scale normal metal loop connected by superconducting wires, where the sample geometry enables full modulation of the thermal activation barrier with applied magnetic flux, resembling a symmetric quantum interference de vice. We find that except a constant factor of five, the modulation of the barrier can be well fitted by the Ambegaokar-Halperin model for a resistively shunted junction, extended here to a proximity junction with flux-tunable coupling energy estimated using quasiclassical theory. This observation sheds light on the understanding of effect of thermal fluctuation in proximity junctions, while may also lead to an unprecedented level of control in quantum interference devices.
Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these para meters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.
53 - Zhong-Bo Kang 2008
We calculate the single transverse-spin asymmetry for open charm production in $pp$ collisions within the QCD collinear factorization approach. We include contributions from both twist-three quark-gluon and tri-gluon correlation functions. We find th at the quark-gluon correlation functions alone generate only a very small asymmetry for open charm production in the kinematic region of current interest at RHIC, so that the observation of any significant single-spin asymmetry would be a clear indication of the presence of tri-gluon correlations inside a polarized proton. We furthermore demonstrate that the tri-gluon contribution could be very different for the production of $D$ and $bar{D}$ mesons. These features make the single spin asymmetry in open charm production in polarized $pp$ collisions at RHIC an excellent probe of tri-gluon correlation functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا