ترغب بنشر مسار تعليمي؟ اضغط هنا

Open-set speaker recognition can be regarded as a metric learning problem, which is to maximize inter-class variance and minimize intra-class variance. Supervised metric learning can be categorized into entity-based learning and proxy-based learning. Most of the existing metric learning objectives like Contrastive, Triplet, Prototypical, GE2E, etc all belong to the former division, the performance of which is either highly dependent on sample mining strategy or restricted by insufficient label information in the mini-batch. Proxy-based losses mitigate both shortcomings, however, fine-grained connections among entities are either not or indirectly leveraged. This paper proposes a Masked Proxy (MP) loss which directly incorporates both proxy-based relationships and pair-based relationships. We further propose Multinomial Masked Proxy (MMP) loss to leverage the hardness of speaker pairs. These methods have been applied to evaluate on VoxCeleb test set and reach state-of-the-art Equal Error Rate(EER).
Automatic speaker verification (ASV) systems utilize the biometric information in human speech to verify the speakers identity. The techniques used for performing speaker verification are often vulnerable to malicious attacks that attempt to induce t he ASV system to return wrong results, allowing an impostor to bypass the system and gain access. Attackers use a multitude of spoofing techniques for this, such as voice conversion, audio replay, speech synthesis, etc. In recent years, easily available tools to generate deepfaked audio have increased the potential threat to ASV systems. In this paper, we compare the potential of human impersonation (voice disguise) based attacks with attacks based on machine-generated speech, on black-box and white-box ASV systems. We also study countermeasures by using features that capture the unique aspects of human speech production, under the hypothesis that machines cannot emulate many of the fine-level intricacies of the human speech production mechanism. We show that fundamental frequency sequence-related entropy, spectral envelope, and aperiodic parameters are promising candidates for robust detection of deepfaked speech generated by unknown methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا