ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a quantum noise approach to study quantum transport through nanostructures. The nanostructures, such as quantum dots, are regarded as artificial atoms, subject to quasi-equilibrium fermionic reservoirs of electrons in biased leads. Noise o perators characterizing the quantum fluctuation in the reservoirs are related to the damping and fluctuation of the artificial atoms through the quantum Langevin equation. The average current and current noise are derived in terms of the reservoir noise correlations. In the white-noise limit, we show that the current and current noise can be exactly calculated by the quantum noise approach, even in the presence of interaction such as Coulomb blockade. As a typical application, the average current and current noise through a single quantum dot are studied.
359 - Nan Zhao , D.L. Zhou , Jia-Lin Zhu 2007
We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibration of a nanomechanical resonator made by semiconductor materials. We show that the spin-orbit interactions of electrons can induce a coherent cou pling between the electron spins and the torsional modes of nanomechanical vibration. This coherent coupling leads to an active cooling for the torsional modes via the dynamical thermalization of the resonator and the spin ensemble.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا