ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce RAFT-Stereo, a new deep architecture for rectified stereo based on the optical flow network RAFT. We introduce multi-level convolutional GRUs, which more efficiently propagate information across the image. A modified version of RAFT-Ster eo can perform accurate real-time inference. RAFT-stereo ranks first on the Middlebury leaderboard, outperforming the next best method on 1px error by 29% and outperforms all published work on the ETH3D two-view stereo benchmark. Code is available at https://github.com/princeton-vl/RAFT-Stereo.
Recent work introduced progressive network growing as a promising way to ease the training for large GANs, but the model design and architecture-growing strategy still remain under-explored and needs manual design for different image data. In this pa per, we propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation. The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator. It enjoys the benefits of both eased training because of progressive growing and improved performance because of broader architecture design space. Experimental results demonstrate new state-of-the-art of image generation. Observations in the search procedure also provide constructive insights into the GAN model design such as generator-discriminator balance and convolutional layer choices.
We introduce UniLoss, a unified framework to generate surrogate losses for training deep networks with gradient descent, reducing the amount of manual design of task-specific surrogate losses. Our key observation is that in many cases, evaluating a m odel with a performance metric on a batch of examples can be refactored into four steps: from input to real-valued scores, from scores to comparisons of pairs of scores, from comparisons to binary variables, and from binary variables to the final performance metric. Using this refactoring we generate differentiable approximations for each non-differentiable step through interpolation. Using UniLoss, we can optimize for different tasks and metrics using one unified framework, achieving comparable performance compared with task-specific losses. We validate the effectiveness of UniLoss on three tasks and four datasets. Code is available at https://github.com/princeton-vl/uniloss.
We present a crowdsourcing workflow to collect image annotations for visually similar synthetic categories without requiring experts. In animals, there is a direct link between taxonomy and visual similarity: e.g. a collie (type of dog) looks more si milar to other collies (e.g. smooth collie) than a greyhound (another type of dog). However, in synthetic categories such as cars, objects with similar taxonomy can have very different appearance: e.g. a 2011 Ford F-150 Supercrew-HD looks the same as a 2011 Ford F-150 Supercrew-LL but very different from a 2011 Ford F-150 Supercrew-SVT. We introduce a graph based crowdsourcing algorithm to automatically group visually indistinguishable objects together. Using our workflow, we label 712,430 images by ~1,000 Amazon Mechanical Turk workers; resulting in the largest fine-grained visual dataset reported to date with 2,657 categories of cars annotated at 1/20th the cost of hiring experts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا