ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 2.5-5.0 $mu$m spectra of 83 nearby ($0.002,<,z,<,0.48$) and bright ($K<14$mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera (IRC) on board $it{AKARI}$. The 2.5-5.0 $mu$m spectral region contains emission lines such a s Br$beta$ (2.63 $mu$m), Br$alpha$ (4.05 $mu$m), and polycyclic aromatic hydrocarbons (PAH; 3.3 $mu$m), which can be used for studying the black hole (BH) masses and star formation activities in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green (PG) and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. (2004). Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region (BLR). Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, $it{WISE}$, and $it{ISO}$ to the $it{AKARI}$ spectra, finding hot and warm dust temperatures of $sim1100,rm{K}$ and $sim220,rm{K}$, respectively, rather than the commonly cited hot dust temperature of 1500 K.
We introduce the AGORA project, a comprehensive numerical study of well-resolved galaxies within the LCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ~100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of 8 galaxies with halo masses M_vir ~= 1e10, 1e11, 1e12, and 1e13 Msun at z=0 and two different (violent and quiescent) assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes will share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit, and validated against observations to verify that the solutions are robust - i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy metabolism. The proof-of-concept dark matter-only test of the formation of a galactic halo with a z=0 mass of M_vir ~= 1.7e11 Msun by 9 differe
Late-type low surface brightness galaxies (LSBs) are faint disk galaxies with central maximum stellar surface densities below 100 Msun/pc^2. The currently favored scenario for their origin is that LSBs have formed in fast-rotating halos with large an gular momenta. We present the first numerical evidence for this scenario using a suite of self-consistent hydrodynamic simulations of a 2.3e11 Msun galactic halo, in which we investigate the correlations between the disk stellar/gas surface densities and the spin parameter of its host halo. A clear anti-correlation between the surface densities and the halo spin parameter, lambda, is found. That is, as the halo spin parameter increases, the disk cutoff radius at which the stellar surface density drops below 0.1 Msun/pc^2 monotonically increases, while the average stellar surface density of the disk within that radius decreases. The ratio of the average stellar surface density for the case of lambda=0.03 to that for the case of lambda=0.14 reaches more than 15. We demonstrate that the result is robust against variations in the baryon fraction, confirming that the angular momentum of the host halo is an important driver for the formation of LSBs.
74 - Ji-hoon Kim 2012
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate. Because we have self-consistently calculated the location of ionized gas, we are able to make spatially-resolved mock observations of star formation tracers, such as H-alpha emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find that the correlation between star formation rate density (estimated from mock H-alpha emission) and molecular hydrogen density shows large scatter, especially at high resolutions of <~ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution, and because H-alpha traces hot gas around star-forming regions and is displaced from the molecular hydrogen peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces, and molecular clouds being dispersed via stellar feedback.
108 - Ji-hoon Kim 2012
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th e radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 degree from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f_esc(i), and how it evolves as the particle ages. We discover that the average escape fraction f_esc is dominated by a small number of SFMC particles with high f_esc(i). On average, the escape fraction from a SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump, and from a galactic disk.
83 - Ji-hoon Kim 2011
There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numeri cal framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto a MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full 3D adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2e11 Msun galactic halo and its 1e5 Msun embedded MBH at redshift 3 in a cosmological LCDM simulation. The MBH feedback heats the surrounding ISM up to 1e6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant, and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.
98 - Ji-hoon Kim 2009
In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mp c scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8e10 Ms each), including star formation and feedback. With galaxies resolved by ~2e7 total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا