ترغب بنشر مسار تعليمي؟ اضغط هنا

Let $P(b)subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=sum_{y}int_{P(b)cap (y+L)} h(x) mathrm dx, $$ where w e integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $bin R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $kleq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinoks patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $bmapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.
We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449-1466]. By we ll-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhedral cone. For a given rational subspace L, we integrate a given polynomial function h over all lattice slices of the affine cone s + c parallel to the subspace L and sum up the integrals. We study these intermediate sums by means of the intermediate generating functions $S^L(s+c)(xi)$, and expose the bidegree structure in parameters s and $xi$, which was implicitly used in the algorithms in our papers [Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra, Found. Comput. Math. 12 (2012), 435-469] and [Intermediate sums on polyhedra: Computation and real Ehrhart theory, Mathematika 59 (2013), 1-22]. The bidegree structure is key to a new proof for the Baldoni--Berline--Vergne approximation theorem for discrete generating functions [Local Euler--Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of rational polytopes, Contemp. Math. 452 (2008), 15-33], using the Fourier analysis with respect to the parameter s and a continuity argument. Our study also enables a forthcoming paper, in which we study intermediate sums over multi-parameter families of polytopes.
This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients o f the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a polynomial function h. Our technique is based on a refinement of an algorithm of A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), pp. 1449--1466] in the unweighted case (i.e., h = 1). In contrast to Barvinoks method, our method is local, obtains an approximation on the level of generating functions, handles the general weighted case, and provides the coefficients in closed form as step polynomials of the dilation. To demonstrate the practicality of our approach we report on computational experiments which show even our simple implementation can compete with state of the art software.
We settle the computational complexity of fundamental questions related to multicriteria integer linear programs, when the dimensions of the strategy space and of the outcome space are considered fixed constants. In particular we construct: 1. poly nomial-time algorithms to exactly determine the number of Pareto optima and Pareto strategies; 2. a polynomial-space polynomial-delay prescribed-order enumeration algorithm for arbitrary projections of the Pareto set; 3. an algorithm to minimize the distance of a Pareto optimum from a prescribed comparison point with respect to arbitrary polyhedral norms; 4. a fully polynomial-time approximation scheme for the problem of minimizing the distance of a Pareto optimum from a prescribed comparison point with respect to the Euclidean norm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا