ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fundamental Plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy for mation mechanisms. The evolution of the zeropoint of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the mass FP for massive, quiescent galaxies since z~2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z~3, we find that quiescent galaxies lie on the mass FP out to z~2. In contrast with ~1.4 dex evolution in the luminosity FP, average residuals from the z~0 mass FP are less than ~0.15 dex since z~2. Assuming the Hyde & Bernardi (2009) mass FP slope, we find that this minimal offset scales as (1+z)^{-0.095+/-0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z~2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the Virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.
We present deep Keck/LRIS spectroscopy and HST/WFC3 imaging in the rest-frame optical for a sample of eight galaxies at z~1.5 with high photometrically-determined stellar masses. The data are combined with VLT/XShooter spectra of five galaxies from v an de Sande et al. (2011, 2012 to be submitted). We find that these thirteen galaxies have high velocity dispersions, with a median of sigma=301 km s^{-1}. This high value is consistent with their relatively high stellar masses and compact sizes. We study their stellar populations using the strength of Balmer absorption lines, which are not sensitive to dust absorption. We find a large range in Balmer absorption strength, with many galaxies showing very strong lines indicating young ages. The median Hdelta_A equivalent width, determined directly or inferred from the H10 line, is 5.4 Angstroms, indicating a luminosity-weighted age of ~1 Gyr. Although this value may be biased towards higher values because of selection effects,high-dispersion galaxies with such young ages are extremely rare in the local Universe. Interestingly we do not find a simple correlation with rest-frame U-V color: some of the reddest galaxies have very strong Balmer absorption lines. These results demonstrate that many high-dispersion galaxies at z~1.5 were quenched recently. This implies that there must be a population of star-forming progenitors at z~2 with high velocity dispersions or linewidths, which are notoriously absent from CO/Halpha selected surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا