ترغب بنشر مسار تعليمي؟ اضغط هنا

Tight Correlations Between Massive Galaxy Structural Properties and Dynamics: The Mass Fundamental Plane Was in Place by z~2

44   0   0.0 ( 0 )
 نشر من قبل Rachel Bezanson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fundamental Plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy formation mechanisms. The evolution of the zeropoint of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the mass FP for massive, quiescent galaxies since z~2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z~3, we find that quiescent galaxies lie on the mass FP out to z~2. In contrast with ~1.4 dex evolution in the luminosity FP, average residuals from the z~0 mass FP are less than ~0.15 dex since z~2. Assuming the Hyde & Bernardi (2009) mass FP slope, we find that this minimal offset scales as (1+z)^{-0.095+/-0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z~2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the Virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.

قيم البحث

اقرأ أيضاً

85 - A. Beifiori 2011
We use a large sample of upper limits and accurate estimates of supermassive black holes masses coupled with libraries of host galaxy velocity dispersions, rotational velocities and photometric parameters extracted from Sloan Digital Sky Survey i-ban d images to establish correlations between the SMBH and host galaxy parameters. We test whether the mass of the black hole, MBH, is fundamentally driven by either local or global galaxy properties. We explore correlations between MBH and stellar velocity dispersion sigma, bulge luminosity, bulge mass Sersic index, bulge mean effective surface brightness, luminosity of the galaxy, galaxy stellar mass, maximum circular velocity Vc, galaxy dynamical and effective masses. We verify the tightness of the MBH-sigma relation and find that correlations with other galaxy parameters do not yield tighter trends. We do not find differences in the MBH-sigma relation of barred and unbarred galaxies. The MBH-sigma relation of pseudo-bulges is also coarser and has a different slope than that involving classical bulges. The MBH-bulge mass is not as tight as the MBH-sigma relation, despite the bulge mass proving to be a better proxy of MBH than bulge luminosity. We find a rather poor correlation between MBH and Sersic index suggesting that MBH is not related to the bulge light concentration. The correlations between MBH and galaxy luminosity or mass are not a marked improvement over the MBH sigma relation. If Vc is a proxy for the dark matter halo mass, the large scatter of the MBH-Vc relation then suggests that MBH is more coupled to the baryonic rather than the dark matter. We have tested the need for a third parameter in the MBH scaling relations, through various linear correlations with bulge and galaxy parameters, only to confirm that the fundamental plane of the SMBH is mainly driven by sigma, with a small tilt due to the effective radius. (Abridged)
We examine the Fundamental Plane (FP) and mass-to-light ratio ($M/L$) scaling relations using the largest sample of massive quiescent galaxies at $1.5<z<2.5$ to date. The FP ($r_{e}, sigma_{e}, I_{e}$) is established using $19$ $UVJ$ quiescent galaxi es from COSMOS with $Hubble$ $Space$ $Telescope$ $(HST)$ $H_{F160W}$ rest-frame optical sizes and X-shooter absorption line measured stellar velocity dispersions. For a very massive, ${rm{log}}(M_{ast}/M_{odot})>11.26$, subset of 8 quiescent galaxies at $z>2$, from Stockmann et al. (2020), we show that they cannot passively evolve to the local Coma cluster relation alone and must undergo significant structural evolution to mimic the sizes of local massive galaxies. The evolution of the FP and $M/L$ scaling relations, from $z=2$ to present-day, for this subset are consistent with passive aging of the stellar population and minor merger structural evolution into the most massive galaxies in the Coma cluster and other massive elliptical galaxies from the MASSIVE Survey. Modeling the luminosity evolution from minor merger added stellar populations favors a history of merging with dry quiescent galaxies.
Fundamental plane of elliptical galaxies can be used to predict the intrinsic size of galaxies and has a number of plausible application to study cosmology and galaxy physics. We present a detailed analysis of the fundamental plane of the SDSS-III BO SS LOWZ and CMASS galaxies. For the standard fundamental plane, we find a strong redshift evolution for the mean residual and show that it is primarily driven by the redshift evolution of the surface brightness of the galaxies. After correcting for the redshift evolution, the FP residuals are strongly correlated with the galaxy properties and some observational systematics. We show that the variations in the FP between the central and satellite galaxies, that have been observed in the literature, can primarily be explained by the correlation of the FP with the galaxy luminosity. We also measure the cross correlations of the FP residuals with the galaxy density field. The amplitude of the cross correlations depends on the galaxy properties and environment with brighter and redder galaxies showing stronger correlation. In general, galaxies in denser environments (higher galaxy bias ) show stronger correlations. We also compare FP amplitude with the amplitudes of intrinsic alignments of galaxy shapes (IA), finding the two to be correlated. Finally, using the FP residuals we also study the impact of intrinsic alignments on the constraint of growth rate using redshift space distortions. We do not observe any significant trends in measurements of the growth rate $f$ as function of the amplitude of FP-density correlations, resulting in null detection of the effects of IA on the RSD measurements.
131 - S. Foucaud 2010
We present a study on the clustering of a stellar mass selected sample of 18,482 galaxies with stellar masses M*>10^10M(sun) at redshifts 0.4<z<2.0, taken from the Palomar Observatory Wide-field Infrared Survey. We examine the clustering properties o f these stellar mass selected samples as a function of redshift and stellar mass, and discuss the implications of measured clustering strengths in terms of their likely halo masses. We find that galaxies with high stellar masses have a progressively higher clustering strength, and amplitude, than galaxies with lower stellar masses. We also find that galaxies within a fixed stellar mass range have a higher clustering strength at higher redshifts. We furthermore use our measured clustering strengths, combined with models from Mo & White (2002), to determine the average total masses of the dark matter haloes hosting these galaxies. We conclude that for all galaxies in our sample the stellar-mass-to-total-mass ratio is always lower than the universal baryonic mass fraction. Using our results, and a compilation from the literature, we furthermore show that there is a strong correlation between stellar-mass-to-total-mass ratio and derived halo masses for central galaxies, such that more massive haloes contain a lower fraction of their mass in the form of stars over our entire redshift range. For central galaxies in haloes with masses M(halo)>10^13M(sun) we find that this ratio is <0.02, much lower than the universal baryonic mass fraction. We show that the remaining baryonic mass is included partially in stars within satellite galaxies in these haloes, and as diffuse hot and warm gas. We also find that, at a fixed stellar mass, the stellar-to-total-mass ratio increases at lower redshifts. This suggests that galaxies at a fixed stellar mass form later in lower mass dark matter haloes, and earlier in massive haloes. We interpret this as a halo downsizing effect, however some of this evolution could be attributed to halo assembly bias.
225 - Rachel Bezanson , Marijn Franx , 2014
Scaling relations between galaxy structures and dynamics have been studied extensively for early and late-type galaxies, both in the local universe and at high redshifts. The abundant differences between the properties of disky and elliptical, or sta r-forming and quiescent, galaxies seem to be characteristic of the local Universe; such clear distinctions begin to disintegrate as observations of massive galaxies probe higher redshifts. In this Paper, we investigate the existence the mass fundamental plane of all massive galaxies ($sigmagtrsim$ 100 km/s). This work includes local galaxies (0.05<z<0.07) from the SDSS, in addition to 31 star-forming and 72 quiescent massive galaxies at intermediate redshift (z~0.7) with absorption line kinematics from deep Keck-DEIMOS spectra and structural parameters from HST imaging. In two parameter scaling relations, star-forming and quiescent galaxies differ structurally and dynamically. However, we show that massive star-forming and quiescent galaxies lie on nearly the same mass fundamental plane, or the relationship between stellar mass surface density, stellar velocity dispersion, and effective radius. The scatter in this relation (measured about $logsigma$) is low: 0.072 dex (0.055 dex intrinsic) at z~0 and 0.10 dex (0.08 dex intrinsic) at z~0.7. This three dimensional surface is not unique: virial relations, with or without a dependence on luminosity profile shapes, can connect galaxy structures and stellar dynamics with similar scatter. This result builds on the recent finding that mass fundamental plane has been stable for early-type galaxies since z~2 (Bezanson et al. 2013). As we now find this also holds for star-forming galaxies to z~0.7, this implies that these scaling relations of galaxies will be minimally susceptible to progenitor biases due to the evolving stellar populations, structures, and dynamics of galaxies through cosmic time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا