ترغب بنشر مسار تعليمي؟ اضغط هنا

We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space transformations. In particular, we focus on nonrelativistic symmetry algebras that give rise to (torsional) Newton-Cartan geometries, for which we demonstrate how the Newton-Cartan metric complex is determined by degenerate co- and contravariant symmetric bilinear forms on the coset. In specific cases, we also show the connection of the resulting nonrelativistic coset spacetimes to pseudo-Riemannian cosets via Inonu-Wigner contraction of relativistic algebras as well as null reduction. Our construction is of use for example when considering limits of the AdS/CFT correspondence in which nonrelativistic spacetimes appear as gravitational backgrounds for nonrelativistic string or gravity theories.
We study holographically Lifshitz-scaling theories with broken symmetries. In order to do this, we set up a bulk action with a complex scalar and a massless vector on a background which consists in a Lifshitz metric and a massive vector. We first stu dy separately the complex scalar and the massless vector, finding a similar pattern in the two-point functions that we can compute analytically. By coupling the probe complex scalar to the background massive vector we can construct probe actions that are more general than the usual Klein--Gordon action. Some of these actions have Galilean boost symmetry. Finally, in the presence of a symmetry breaking scalar profile in the bulk, we reproduce the expected Ward identities of a Lifshitz-scaling theory with a broken global continuous symmetry. In the spontaneous case, the latter imply the presence of a gapless mode, the Goldstone boson, which will have dispersion relations dictated by the Lifshitz scaling.
We study various geometrical aspects of Schroedinger space-times with dynamical exponent z>1 and compare them with the properties of AdS (z=1). The Schroedinger metrics are singular for 1<z<2 while the usual Poincare coordinates are incomplete for z geq 2. For z=2 we obtain a global coordinate system and we explain the relations among its geodesic completeness, the choice of global time, and the harmonic trapping of non-relativistic CFTs. For z>2, we show that the Schroedinger space-times admit no global timelike Killing vectors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا