ترغب بنشر مسار تعليمي؟ اضغط هنا

Following work of Colding-Minicozzi, we define a notion of entropy for connections over $mathbb R^n$ which has shrinking Yang-Mills solitons as critical points. As in Colding-Minicozzi, this entropy is defined implicitly, making it difficult to work with analytically. We prove a theorem characterizing entropy stability in terms of the spectrum of a certain linear operator associated to the soliton. This leads furthermore to a gap theorem for solitons. These results point to a broader strategy of studying generic singularities of Yang-Mills flow, and we discuss the differences in this strategy in dimension $n=4$ versus $n geq 5$.
208 - Jeff Streets 2013
We show that K-energy minimizing movements agree with smooth solutions to Calabi flow as long as the latter exist. As corollaries we conclude that in a general Kahler class long time solutions of Calabi flow minimize both K-energy and Calabi energy. Lastly, by applying convergence results from the theory of minimizing movements, these results imply that long time solutions to Calabi flow converge in the weak distance topology to minimizers of the K-energy functional on the metric completion of the space of Kahler metrics, assuming one exists.
83 - Jeff Streets 2012
We recast the Calabi flow in DeGiorgis language of minimizing movements. We establish the long time existence of minimizing movements for K-energy with arbitrary initial condition. Furthermore we establish some a priori regularity of these solutions, and that sufficiently regular minimizing movements are smooth solutions to Calabi flow.
98 - Jeff Streets 2012
We show some results for the $L^2$ curvature flow linked by the theme of addressing collapsing phenomena. First we show long time existence and convergence of the flow for $SO(3)$-invariant initial data on $S^3$, as well as a long time existence and convergence statement for three-manifolds with initial $L^2$ norm of curvature chosen small with respect only to the diameter and volume, which are both necessary dependencies for a result of this kind. In the critical dimension $n = 4$ we show a related low-energy convergence statement with an additional hypothesis. Finally we exhibit some finite time singularities in dimension $n geq 5$, and show examples of finite time singularities in dimension $n geq 6$ which are collapsed on the scale of curvature.
87 - Jeff Streets , Gang Tian 2010
In prior work the authors introduced a parabolic flow of pluriclosed metrics. Here we give improved regularity results for solutions to this equation. Furthermore, we exhibit this equation as the gradient flow of the lowest eigenvalue of a certain Sc hrodinger operator, and show the existence of an expanding entropy functional for this flow. Finally, we motivate a conjectural picture of the optimal regularity results for this flow, and discuss some of the consequences.
133 - Jeff Streets 2010
We investigate the low-energy behavior of the gradient flow of the $L^2$ norm of the Riemannian curvature on four-manifolds. Specifically, we show long time existence and exponential convergence to a metric of constant sectional curvature when the in itial metric has positive Yamabe constant and small initial energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا