ﻻ يوجد ملخص باللغة العربية
We show some results for the $L^2$ curvature flow linked by the theme of addressing collapsing phenomena. First we show long time existence and convergence of the flow for $SO(3)$-invariant initial data on $S^3$, as well as a long time existence and convergence statement for three-manifolds with initial $L^2$ norm of curvature chosen small with respect only to the diameter and volume, which are both necessary dependencies for a result of this kind. In the critical dimension $n = 4$ we show a related low-energy convergence statement with an additional hypothesis. Finally we exhibit some finite time singularities in dimension $n geq 5$, and show examples of finite time singularities in dimension $n geq 6$ which are collapsed on the scale of curvature.
We investigate the low-energy behavior of the gradient flow of the $L^2$ norm of the Riemannian curvature on four-manifolds. Specifically, we show long time existence and exponential convergence to a metric of constant sectional curvature when the in
We continue studying a parabolic flow of almost K{a}hler structures introduced by Streets and Tian which naturally extends K{a}hler-Ricci flow onto symplectic manifolds. In the system of primarily the symplectic form, almost complex structure, Chern
We consider the quermassintegral preserving flow of closed emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the princ
In this note, we study the curvature flow to Nirenberg problem on $S^2$ with non-negative nonlinearity. This flow was introduced by Brendle and Struwe. Our result is that the Nirenberg problems has a solution provided the prescribed non-negative Gaus
We prove the mean curvature flow of a spacelike graph in $(Sigma_1times Sigma_2, g_1-g_2)$ of a map $f:Sigma_1to Sigma_2$ from a closed Riemannian manifold $(Sigma_1,g_1)$ with $Ricci_1> 0$ to a complete Riemannian manifold $(Sigma_2,g_2)$ with bound