ترغب بنشر مسار تعليمي؟ اضغط هنا

The CeT2Al10 family of orthorhombic compounds exhibits a very peculiar evolution from a Kondo-insulator (T: Fe) to an unconventional long-range magnetic order (T: Ru, Os). Inelastic neutron scattering experiments performed on single-crystal CeFe2Al10 reveal that this material develops a spin-gap in its magnetic spectral response below ~ 50 K, with a magnetic excitation dispersing from $E = 10.2 pm 0.5$ meV at the Y zone-boundary point [q = (0,1,0)] to $approx 12$ meV at the top of the branch. The excitation shows a pronounced polarization of the magnetic fluctuations along a, the easy anisotropy axis. Its behavior is contrasted with that of the (magnonlike) modes previously reported for CeRu2Al10, which have transverse character and exist only in the antiferromagnetic state. The present observation is ascribed to a magnetic exciton mechanism invoked to explain a similar magnetic response previously discovered in YbB12.
Spin dynamics in the new Kondo insulator compound CeRu2Al10 has been studied using unpolarized and polarized neutron scattering on single crystals. In the unconventional ordered phase forming below T0 = 27.3 K, two excitation branches are observed wi th significant intensities, the lower one of which has a gap of 4.8 +/- 0.3 meV and a pronounced dispersion up to about 8.5 meV. Comparison with RPA magnon calculations assuming crystal-field and anisotropic exchange couplings captures major aspects of the data, but leaves unexplained discrepancies, pointing to a key role of direction-specific hybridization between 4f and conduction band states in this compound.
Elastic and inelastic neutron scattering measurements have been performed on powder and single-crystal samples of orthorhombic CeRu2Al10. The order forming below T0 = 27 K was identified as a long-range antiferromagnetic state with the wave vector k = (1,0,0). The magnetic spectral response in the ordered phase, measured on powder, is characterized by a spin gap and a pronounced peak at 8 meV, whose Q dependence suggests a magnetic origin. Both features are suppressed when temperature is raised to T0, and a conventional relaxational behavior is observed at 40 K. This peculiar spin dynamics is discussed in connection with recent magnetization results for the same compound.
The nature of the unconventional ordered phase occurring in CeRu2Al10 below T0 = 27 K was investigated by neutron scattering. Powder diffraction patterns show clear superstructure peaks corresponding to forbidden (h + k)-odd reflections of the Cmcm s pace group. Inelastic neutron scattering experiments further reveal a pronounced magnetic excitation developing in the ordered phase at an energy of 8 meV.
Neutron powder diffraction measurements have been performed on Ce_xNd_{1-x}B_6 (x = 0.5, 0.6, 0.7, and 0.8) solid solutions to determine the type of magnetic order occurring in these compounds as a result of the interplay between magnetic dipole exch ange and antiferroquadrupolar interactions. In the Ce-rich range, the sequence of two magnetic phases, with an incommensurate order [k = (1/4 -delta, 1/4 -delta, 1/2)] forming below T N followed by a lock-in--type transition at lower temperature, is quite similar to that reported earlier for Ce_xPr_{1-x} B_6. For x = 0.5, on the other hand, the same antiferromagnetic order as in pure NdB6 first occurs at TN, then coexists with an incommensurate component below the lower transition temperature. These results are in good agreement with previous resistivity measurements and support the idea that Ce and Nd magnetic moments in this system can be relatively decoupled.
Magnetic ordering phenomena in CexPr1-xB6 solid solutions have been studied using both powder and single-crystal neutron diffraction. A variety of magnetic structures are observed depending on temperature and Ce concentration. Over a broad compositio n range (x $le$ 0.7), Pr-Pr interactions play a dominant role, giving rise to incommensurate structures with wave vectors of the form k{IC1}=(1/4-delta, 1/4, 1/2) or k{IC2}=(1/4-delta, 1/4-delta, 1/2). The crossover to a CeB6-like regime takes place near x = 0.7-0.8. For the latter composition, the antiferroquadrupolar phase transition observed in transport measurements precedes the onset, at lower temperature, of a commensurate magnetic order similar to that existing in CeB6. However, unlike in the pure compound, an incommensurate magnetic order is formed at even higher temperature and persists in the antiferroquadrupolar phase down to the lock-in transition. These results are shown to reflect the interplay between various type of dipole exchange and higher multipole interactions in this series of compounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا