ترغب بنشر مسار تعليمي؟ اضغط هنا

206 - Alexandre Nicolas 2013
We study a mesoscopic model for the flow of amorphous solids. The model is based on the key features identified at the microscopic level, namely peri- ods of elastic deformation interspersed with localised rearrangements of parti- cles that induce lo ng-range elastic deformation. These long-range deformations are derived following a continuum mechanics approach, in the presence of solid boundaries, and are included in full in the model. Indeed, they mediate spatial cooperativity in the flow, whereby a localised rearrangement may lead a distant region to yield. In particular, we simulate a channel flow and find manifestations of spatial cooperativity that are consistent with published experimental obser- vations for concentrated emulsions in microchannels. Two categories of effects are distinguished. On the one hand, the coupling of regions subject to different shear rates, for instance,leads to finite shear rate fluctuations in the seemingly un- sheared plug in the centre of the channel. On the other hand, there is convinc- ing experimental evidence of a specific rheology near rough walls. We discuss diverse possible physical origins for this effect, and we suggest that it may be associated with the bumps of particles into surface asperities as they slide along the wall.
86 - Lyderic Bocquet 2013
In this paper, we propose a new derivation for the Green-Kubo relationship for the liquid-solid friction coefficient, characterizing hydrodynamic slippage at a wall. It is based on a general Langevin approach for the fluctuating wall velocity, involv ing a non-markovian memory kernel with vanishing time integral. The calculation highlights some subtleties of the wall-liquid dynamics, leading to superdiffusive motion of the fluctuating wall position.
Nucleation is an out-of-equilibrium process, which can be strongly affected by the presence of external fields. In this letter, we report a simple extension of classical nucleation theory to systems submitted to an homogeneous shear flow. The theory involves accounting for the anisotropy of the critical nucleus formation, and introduces a shear rate dependent effective temperature. This extended theory is used to analyze the results of extensive molecular dynamics simulations, which explore a broad range of shear rates and undercoolings. At fixed temperature, a maximum in the nucleation rate is observed, when the relaxation time of the system is comparable to the inverse shear rate. In contrast to previous studies, our approach does not require a modification of the thermodynamic description, as the effect of shear is mainly embodied into a modification of the kinetic prefactor and of the temperature.
216 - Samy Merabia 2011
We investigate the problem of heat conduction across a molecular junction connecting two nanoparticles, both in vacuum and in a liquid environment, using classical molecular dynamics simulations. In vacuum, the well-known result of a length independe nt conductance is recovered; its precise value, however, is found to depend sensitively on the overlap between the vibrational spectrum of the junction and the density of states of the nanoparticles that act as thermal contacts. In a liquid environment, the conductance is constant up to a crossover length, above which a standard Fourier regime is recovered.
189 - Jean-Louis Barrat 2011
Recently, Dammak and coworkers (H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.J. Greffet. Quantumthermal bath for molecular dynamics simulation. Phys. Rev. Lett., 103:190601, 2009.) proposed that the quantum statistics of vibrations in condens ed systems at low temperature could be simulated by running molecular dynamics simulations in the presence of a colored noise with an appropriate power spectral density. In the present contribution, we show how this method can be implemented in a flexible manner and at a low computational cost by synthesizing the corresponding noise on the fly. The proposed algorithm is tested for a simple harmonic chain as well as for a more realistic model of aluminium crystal. The energy and Debye-Waller factor are shown to be in good agreement with those obtained from harmonic approximations based on the phonon spectrum of the systems. The limitations of the method associated with anharmonic effects are also briefly discussed. Some perspectives for disordered materials and heat transfer are considered.
81 - Laurent Joly 2011
We investigate various possible definitions of an effective temperature for a particularly simple nonequilibrium stationary system, namely a heated Brownian particle suspended in a fluid. The effective temperature based on the fluctuation dissipation ratio depends on the time scale under consideration, so that a simple Langevin description of the heated particle is impossible. The short and long time limits of this effective temperature are shown to be consistent with the temperatures estimated from the kinetic energy and Einstein relation, respectively. The fluctuation theorem provides still another definition of the temperature, which is shown to coincide with the short time value of the fluctuation dissipation ratio.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا