ﻻ يوجد ملخص باللغة العربية
Nucleation is an out-of-equilibrium process, which can be strongly affected by the presence of external fields. In this letter, we report a simple extension of classical nucleation theory to systems submitted to an homogeneous shear flow. The theory involves accounting for the anisotropy of the critical nucleus formation, and introduces a shear rate dependent effective temperature. This extended theory is used to analyze the results of extensive molecular dynamics simulations, which explore a broad range of shear rates and undercoolings. At fixed temperature, a maximum in the nucleation rate is observed, when the relaxation time of the system is comparable to the inverse shear rate. In contrast to previous studies, our approach does not require a modification of the thermodynamic description, as the effect of shear is mainly embodied into a modification of the kinetic prefactor and of the temperature.
Macroscopic models of nucleation provide powerful tools for understanding activated phase transition processes. These models do not provide atomistic insights and can thus sometime lack material-specific descriptions. Here we provide a comprehensive
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are
In this paper we introduce a new method to design interparticle interactions to target arbitrary crystal structures via the process of self-assembly. We show that it is possible to exploit the curvature of the crystal nucleation free-energy barrier t
In standard nucleation theory, the nucleation process is characterized by computing $DeltaOmega(V)$, the reversible work required to form a cluster of volume $V$ of the stable phase inside the metastable mother phase. However, other quantities beside
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun