ترغب بنشر مسار تعليمي؟ اضغط هنا

CVT and XOR are two binary operations together used to calculate the sum of two non-negative integers on using a recursive mechanism. In this present study the convergence behaviors of this recursive mechanism has been captured through a tree like st ructure named as CVT-XOR Tree. We have analyzed how to identify the parent nodes, leaf nodes and internal nodes in the CVT-XOR Tree. We also provide the parent information, depth information and the number of children of a node in different CVT-XOR Trees on defining three different matrices. Lastly, one observation is made towards very old Mathematical problem of Goldbach Conjecture.
Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generated by Boolean functions. In this paper, different classes of Boolean functions with regards to Interaction Graph with biologically significant properties have been adumbrated.
Boolean networks are used to model biological networks such as gene regulatory networks. Often Boolean networks show very chaotic behavior which is sensitive to any small perturbations.In order to reduce the chaotic behavior and to attain stability i n the gene regulatory network,nested canalizing functions(NCF)are best suited NCF and its variants have a wide range of applications in system biology. Previously many work were done on the application of canalizing functions but there were fewer methods to check if any arbitrary Boolean function is canalizing or not. In this paper, by using Karnaugh Map this problem gas been solved and also it has been shown that when the canalizing functions of n variable is given, all the canalizing functions of n+1 variable could be generated by the method of concatenation. In this paper we have uniquely identified the number of NCFs having a particular hamming distance (H.D) generated by each variable x as starting canalizing input. Partially nested canalizing functions of 4 variables have also been studied in this paper. Keywords: Karnaugh Map, Canalizing function, Nested canalizing function, Partially nested canalizing function,concatenation
Boolean networks are used to model biological networks such as gene regulatory networks. Often Boolean networks show very chaotic behaviour which is sensitive to any small perturbations. In order to reduce the chaotic behaviour and to attain stabilit y in the gene regulatory network, nested Canalizing Functions (NCFs) are best suited. NCFs and its variants have a wide range of applications in systems biology. Previously, many works were done on the application of canalizing functions, but there were fewer methods to check if any arbitrary Boolean function is canalizing or not. In this paper, by using Karnaugh Map this problem is solved and also it has been shown that when the canalizing functions of variable is given, all the canalizing functions of variable could be generated by the method of concatenation. In this paper we have uniquely identified the number of NCFs having a particular Hamming Distance (H.D) generated by each variable as starting canalizing input. Partially NCFs of 4 variables has also been studied in this paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا