ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-resonance interactions are a promising way to implement all-microwave two-qubit gates with fixed-frequency qubits. In this work, we study the dependence of the cross-resonance interaction rate on qubit-qubit detuning and compare with a model th at includes the higher levels of a transmon system. To carry out this study we employ two transmon qubits--one fixed frequency and the other flux tunable--to allow us to vary the detuning between qubits. We find that the interaction closely follows a three-level model of the transmon, thus confirming the presence of an optimal regime for cross-resonance gates.
We discuss encodings of fermionic many-body systems by qubits in the presence of symmetries. Such encodings eliminate redundant degrees of freedom in a way that preserves a simple structure of the system Hamiltonian enabling quantum simulations with fewer qubits. First we consider $U(1)$ symmetry describing the particle number conservation. Using a previously known encoding based on the first quantization method a system of $M$ fermi modes with $N$ particles can be simulated on a quantum computer with $Q=Nlog{(M)}$ qubits. We propose a new version of this encoding tailored to variational quantum algorithms. Also we show how to improve sparsity of the simulator Hamiltonian using orthogonal arrays. Next we consider encodings based on the second quantization method. It is shown that encodings with a given filling fraction $ u=N/M$ and a qubit-per-mode ratio $eta=Q/M<1$ can be constructed from efficiently decodable classical LDPC codes with the relative distance $2 u$ and the encoding rate $1-eta$. A family of codes based on high-girth bipartite graphs is discussed. Graph-based encodings eliminate roughly $M/N$ qubits. Finally we consider discrete symmetries, and show how to eliminate qubits using previously known encodings, illustrating the technique for simple molecular-type Hamiltonians.
The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynmans famous plenty of room at the bottom lecture, hinting at the notion of novel devices employing quantum mechanics, the quantum inf ormation community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.
Quantum error correction (QEC) is an essential step towards realising scalable quantum computers. Theoretically, it is possible to achieve arbitrarily long protection of quantum information from corruption due to decoherence or imperfect controls, so long as the error rate is below a threshold value. The two-dimensional surface code (SC) is a fault-tolerant error correction protocol} that has garnered considerable attention for actual physical implementations, due to relatively high error thresholds ~1%, and restriction to planar lattices with nearest-neighbour interactions. Here we show a necessary element for SC error correction: high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. The experiment is performed on a sub-section of the SC lattice with three superconducting transmon qubits, in which two independent outer code qubits are joined to a central syndrome qubit via two linking bus resonators. With all-microwave high-fidelity single- and two-qubit nearest-neighbour entangling gates, we demonstrate entanglement distributed across the entire sub-section by generating a three-qubit Greenberger-Horne-Zeilinger (GHZ) state with fidelity ~94%. Then, via high-fidelity measurement of the syndrome qubit, we deterministically entangle the otherwise un-coupled outer code qubits, in either an even or odd parity Bell state, conditioned on the syndrome state. Finally, to fully characterize this parity readout, we develop a new measurement tomography protocol to obtain a fidelity metric (90% and 91%). Our results reveal a straightforward path for expanding superconducting circuits towards larger networks for the SC and eventually a primitive logical qubit implementation.
We present methods and results of shot-by-shot correlation of noisy measurements to extract entangled state and process tomography in a superconducting qubit architecture. We show that averaging continuous values, rather than counting discrete thresh olded values, is a valid tomographic strategy and is in fact the better choice in the low signal-to-noise regime. We show that the effort to measure $N$-body correlations from individual measurements scales exponentially with $N$, but with sufficient signal-to-noise the approach remains viable for few-body correlations. We provide a new protocol to optimally account for the transient behavior of pulsed measurements. Despite single-shot measurement fidelity that is less than perfect, we demonstrate appropriate processing to extract and verify entangled states and processes.
We introduce a new entangling gate between two fixed-frequency qubits statically coupled via a microwave resonator bus which combines the following desirable qualities: all-microwave control, appreciable qubit separation for reduction of crosstalk an d leakage errors, and the ability to function as a two-qubit conditional-phase gate. A fixed, always-on interaction is explicitly designed between higher energy (non-computational) states of two transmon qubits, and then a conditional-phase gate is `activated on the otherwise unperturbed qubit subspace via a microwave drive. We implement this microwave-activated conditional-phase gate with a fidelity from quantum process tomography of 87%.
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measure ment operators used to interrogate the system are generated by gates that have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography can not be fully corrected through oversampling or by performing a larger set of experiments. We present an alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation and measurement. In order to make the resulting optimization tractable we linearize about the target, a reasonable approximation when benchmarking a quantum computer as opposed to probing a black-box function.
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconduc ting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly-excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of 90% (unconstrained) and 86% (maximum likelihood estimator).
The control and handling of errors arising from cross-talk and unwanted interactions in multi-qubit systems is an important issue in quantum information processing architectures. We introduce a benchmarking protocol that provides information about th e amount of addressability present in the system and implement it on coupled superconducting qubits. The protocol consists of randomized benchmarking each qubit individually and then simultaneously, and the amount of addressability is related to the difference of the average gate fidelities of those experiments. We present the results on two similar samples with different amounts of cross-talk and unwanted interactions, which agree with predictions based on simple models for the amount of residual coupling.
We describe a scalable experimental protocol for obtaining estimates of the error rate of individual quantum computational gates. This protocol, in which random Clifford gates are interleaved between a gate of interest, provides a bounded estimate of the average error of the gate under test so long as the average variation of the noise affecting the full set of Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find gate errors that compare favorably with the gate errors extracted via quantum process tomography.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا